
On Spatial Pattern Matching
Yixiang Fang1, Reynold Cheng1, Gao Cong2, Nikos Mamoulis3, Yun Li4

1The University of Hong Kong, 2Nanyang Technological University, 3University of Ioannina, 4Nanjing University
1{yxfang,ckcheng}@cs.hku.hk, 2gaocong@ntu.edu.sg, 3nikos@cs.uoi.gr, 4liycser@gmail.com

Abstract— In this paper, we study the spatial pattern matching
(SPM) query. Given a set D of spatial objects (e.g., houses and
shops), each with a textual description, we aim at finding all
combinations of objects from D that match a user-defined spatial
pattern P . A pattern P is a graph where vertices represent
spatial objects, and edges denote distance relationships between
them. The SPM query returns the instances that satisfy P . An
example of P can be “a house within 10-minute walk from a
school, which is at least 2km away from a hospital”. The SPM
query can benefit users such as house buyers, urban planners,
and archaeologists. We prove that answering such queries is
computationally intractable, and propose two efficient algorithms
for their evaluation. Extensive experimental evaluation and cases
studies on four real datasets show that our proposed solutions
are highly effective and efficient.

I. INTRODUCTION

Emerging location-based services (e.g., Google Maps) have
raised plenty of research interest [1], [2], [3], [4], [5], [6].
Particularly, the spatial-keyword query (SKQ) (e.g., [7], [3],
[8], [4]) has been extensively studied. In general, an SKQ
returns sets of spatial objects whose locations are close to
each other, and whose descriptions are relevant to a set of
user-given text strings (called keyword set). The keyword set
reflects the kinds of objects that a user is interested. A typical
SKQ is the mCK query [7], [3], which finds, given a spatial
database D and a keyword set Q, the set of spatial objects
from D, such that they cover all the keywords of Q, and the
maximum distance between any pair of objects is minimized.
In Figure 1, for example, D comprises spatial objects labeled
with different keywords (e.g., park and station). Suppose that
Q={house, school, hospital}, the answer to the mCK query is
the set of objects circled in dashed line in the figure.

school

house

parkstation

[0.2, 0.5]

[0.0, 0.2][0.2, 0.4]

{school, gym}

house

park

0.2 0.40.0 0.6

house
{cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

[10, 20]

office

house waterworks

[15, 40][10, 20]

waterworks

house

office

CBD

Inner area

Outer
suburb

20km

15km

15km

school

house

[0.2, 0.5]

(b) A pattern P

school

house

[0.2, 0.5]

(c) A pattern P’

{school, gym}

house

park
0.2

0.40.0 0.6

house
{cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

{school, gym}

house

park

0.2 0.40.0 0.6

house
{cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

(a) Spatial object set D

Fig. 1. An mCK query with Q={house, school, hospital}.

Although SKQs are useful, they may not be able to precisely
capture the user’s intention. Suppose that a user wishes to
purchase a house, which is close to a school and a hospital.
Moreover, while the user does not want the hospital to be
too close to her living space (e.g., for hygienic reasons), she

school

house

parkstation

[0.3, 0.5]

[0.0, 0.2][0.2, 0.4]

{school, gym}

house

park

0.2 0.40.0 0.6

house {cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

[10, 20]

office

house waterworks

[15, 40][10, 20]

waterworks

house

office

CBD

Inner area

Outer
suburb

20km

15km

15km

{school, gym}

house

park

0.2 0.40.0 0.6

house {cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

school

house

[0.3, 0.5]{school, gym}

house

park

0.2 0.40.0 0.6

house {cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

(a) Spatial object set D (b) A pattern P

school

house

parkstation

[0.3, 0.5]

[0.0, 0.2][0.2, 0.4]

{school, gym}

house

park

0.2 0.40.0 0.6

house {cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

[10, 20]

office

house waterworks

[15, 40][10, 20]

waterworks

house

office

CBD

Inner area

Outer
suburb

20km

15km

15km

{school, gym}

house

park

0.2 0.40.0 0.6

house {cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

school

house

[0.3, 0.5]{school, gym}

house

park

0.2 0.40.0 0.6

house {cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

(a) Spatial object set D (b) A pattern P

(a) human settlement area (b) a spatial pattern
Fig. 2. The human settlement and a spatial pattern [9].

wishes the hospital to be accessible in a reasonable distance.
A hospital between 0.5km and 2km from the house would be
desirable. This request may not be answered by an SKQ (e.g.,
[3], [4]) – a user may always get instances where the three
objects are close to each other. The objects circled in the solid
ellipse of Figure 1 are in fact those that interest her most.

Let us consider another example where specifying spatial
relationships for query keywords is important. In geography
domain, human settlement is the study of the human land-use
patterns, or the “evidence within a given region of the physical
remnants of communities and networks” [10]. This topic is
interesting to urban planners and archaeologists. Figure 2
illustrates a human settlement [9]. An urban planning expert
may conjecture that in a certain city, an office is located in
the CBD (Central Business District); a house is in the inner
city; a waterworks is built in the outer suburbs. He/she would
like to retrieve objects for (office, house, waterworks), which
are respectively located in the CBD, the inner city, and outer
suburbs. The objects retrieved can be the subject of further
analysis and case studies. In this example, the three kinds
of objects interesting to the user, located in different areas,
are separated by some distance constraints (e.g., each pair
of object has a distance in a certain range). However, these
distance relationships between keywords cannot be expressed
in an existing SKQ.

To allow spatial relationships among keywords to be con-
veniently specified, we propose the spatial pattern matching
(SPM) query. As shown in Figure 3, given a spatial database
D (in (a)) and a spatial pattern P (in (b)), SPM finds all the
instances of P in D. Notice that P is a graph, where each
vertex corresponds to an object with a keyword attached, and
each edge is augmented with a spatial distance relationship.
For example, the user can specify that the house found should
be within the vicinity of [0.2, 0.5] (km) from a school. In a
number of countries (e.g., Singapore), if a student lives within
a particular vicinity (e.g., 0.5km or 1km) of a school p, then
he/she has a high chance to be admitted to p [11]. The user

school

house

parkstation

[0.2, 0.5]

[0.0, 0.2][0.2, 0.4]

{school, gym}

house

park

0.2 0.40.0 0.6

house
{cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

[10, 20]

office

house waterworks

[15, 40][10, 20]

waterworks

house

office

CBD

Inner area

Outer
suburb

20km

15km

15km

school

house

[0.2, 0.5]

(b) A pattern P

school

house

[0.2, 0.5]

(c) A pattern P’

{school, gym}

house

park

0.40.0 0.6

house
{cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

{school, gym}

house

park

0.2 0.40.0 0.6

house
{cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

(a) Spatial object set D

0.2

school

house

parkstation

[0.2, 0.5]

[0.0, 0.2][0.2, 0.4]

{school, gym}

house

park

0.2 0.40.0 0.6

house {cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

[10, 20]

office

house waterworks

[15, 40][10, 20]

waterworks

house

office

CBD

Inner area

Outer
suburb

20km

15km

15km

{school, gym}

house

park

0.2 0.40.0 0.6

house {cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

school

house

[0.2, 0.5]{school, gym}

house

park

0.2 0.40.0 0.6

house {cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

(a) Spatial object set D (b) A pattern P

(a) Spatial object set D (b) Spatial pattern P
Fig. 3. Illustrating the SPM query.

may also want the house to be at least 0.2km from the school
to avoid noise. In this example, the four objects connected
in solid lines, which satisfy all the constraints of the spatial
pattern P , is an instance (or a match) of P . In Figure 2(b), the
spatial pattern for the human settlement example is shown.

As discussed before, an SKQ (e.g., [7], [3], [8], [4]) can
only return objects that are spatially close to each other. SPM
queries are reminiscent to multi-way spatial joins studied in
previous work [12], [13]. However, those solutions are not
designed to use keywords and exclusion relationship (to be
discussed later) to find spatial pattern instances. As a result,
pure spatial indexes, such as the R-tree, cannot be used unless
they are built on-the-fly for each vertex, which is typically
expensive. Another related topic is graph pattern matching
(GPM) [14], [15], which aims at finding subgraphs matching a
query pattern from a large graph. However, using GPM tech-
niques to solve SPM problems is not straightforward because
(1) the spatial patterns associated with distance intervals and
inclusion/exclusion-ship are different with graph patterns, and
(2) the solutions to the GPM problem are mainly designed for
graphs, rather than spatial objects which are often indexed by
R-tree like structures. To adapt the GPM solutions for solving
the SPM queries, we first have to transform the set of spatial
objects involved (e.g., Figure 3(a)) into a graph, and then run a
GPM algorithm on it. As shown by experiments in Section V,
the adapted GPM solutions (i.e., [14], [15]) are very inefficient,
calling for faster solutions.

Our contributions. We present a formal definition of a
spatial pattern. We propose several distance constraints for
a spatial pattern, which specify (1) minimum and maximum
distances between two object types; and (2) exclusion and
inclusion. Figure 3(b) illustrates the exclusion relationship
(→), which expresses that (1) a school should be at least
0.3km from a house but not more than 1.0km; and (2) no
school should be in the vicinity of 0.3km of a house. We
then define the SPM problem and show that it is NP-hard.
To answer the query, we propose two efficient algorithms.
The first one, called multi-pair-join (or MPJ), is adapted from
the multi-way join [16], [14] considering edges of the spatial
pattern. We also develop a sampling-based estimation method
to guide the execution order of the joins. Since this solution
follows existing multi-way join, it is easy to implement. We
further develop a faster solution customized for SPM queries.
This solution, called the multi-star-join (or MSJ), derives
the lower and upper bounds of distances between object

Fig. 4. The user interface of SpaceKey [17].

instances based on dynamic programming. We also introduce
two pruning criteria to improve query performance.

We have experimentally evaluated our proposed methods on
real datasets, which shows that our best solution is over an or-
der of magnitude faster than the baselines adapted from GPM
solutions. We have also conducted a case study. The results
show that SPM queries typically return more relevant results
for target applications than state-of-the-art SKQ solutions.

In addition, we have developed a system called SpaceKey,
which supports the SPM query. Its user interface is shown in
Figure 4. To draw a pattern, a user can drag icons (representing
keywords) from the panel (bottom-left) to create vertices (top-
left), and then create edges by linking pairs of icons. Their
distance intervals and relationship can be edited using the
panel (bottom-right) 1. After clicking the “Query” button, the
user can view the matches on the map one by one. It also
allows users to visually compare the results of different SKQs.
More details of introducing SpaceKey could be found in [17].

Organization. We formulate the SPM problem in Section II.
Sections III and IV present our solutions MPJ and MSJ respec-
tively. We report experimental results in Section V. We review
related work in Section VI and conclude in Section VII.

II. PROBLEM DEFINITION

A. The SPM Problem

Let D be a database of spatial objects (or objects for
brevity). Each object oi∈D (1≤i≤|D|) has 2D coordinates
(xi, yi), and is associated with a set of keywords, denoted
by doc(oi). In Figure 3(a), for example, the object at (0.55,
0.1) has a keyword “house”. We say that oi matches with a
keyword w, if w∈doc(oi). Given two objects oi and oj , we
use |oi, oj | to denote their Euclidean distance. We denote a
spatial circle with center o and radius r by O(o, r). Table I
summarizes the notations used in the paper.

1The user can input the lower/upper bounds of the intervals based on his
experience and expertise. Alternatively, the system can be designed to give
suggestions, based on, for instance, the previous users’ inputs or query results.

Let us now study the definition of spatial pattern.

Definition 1 (spatial pattern 2). A spatial pattern P is a simple
graph (V , E) of n vertices {v1, v2, · · · , vn} and m edges,
and the following constraints hold:
• Each vertex vi∈V has a keyword wi;
• Each edge (vi, vj)∈E has a distance interval [li,j , ui,j],

where li,j (ui,j) is the lower (respectively upper) bound
of distances between two matching objects in D;

• Each edge (vi, vj)∈E is associated with one of the signs:
(1) vi→vj; (2) vi←vj; (3) vi↔vj; and (4) vi–vj .

To illustrate Definition 1, consider the edge house→school
with distance interval [0.3, 1.0] (km) in the pattern of Fig-
ure 3(b). Intuitively, the user wishes to retrieve two objects
(say, os and ot) such that: (1) os and ot have keywords house
and school respectively; (2) the distance of os from ot is
between 0.3km and 1.0km; and (3) there does not exist any
object with keyword school, which is less than 0.3km from os.
We say that house excludes school, denoted by house→school,
to express the user’s wish of not getting any match where a
school object is found to be less than 0.3km from a house
object. This can be useful to a user who wants to find a house
that is not too close to a school (e.g., to avoid the noise and
crowd caused by school). Let (vi, vj) be an edge in E, with
distance interval [li,j , ui,j]. Also, let ok and ol be the two
objects returned in a match of E, where wi∈doc(ok) and
wj∈doc(ol). We now discuss the four possible signs of an
edge in Definition 1:
• vi→vj [vi excludes vj]: No object with keyword wj in
D should have a distance less than li,j from ok.

• vi←vj [vj excludes vi]: No object with keyword wi in
D should have a distance less than li,j from ol.

• vi↔vj [mutual exclusion]: No object with keyword wj
in D should have a distance less than li,j from ok, and
the distance of any object with keyword wi in D should
be at least li,j away from ol.

• vi–vj [mutual inclusion]: The occurrence of any object
(other than ok and ol) with keywords wi and wj in D
with distance shorter than li,j is allowed.

For example, in the pattern of Figure 3(b), house excludes
school, and house has a mutual inclusion with park.
Remarks. The notion of spatial pattern can be extended to
support other query requirements. For example, each vertex of
P may carry multiple keywords. Also, the distance constraint
can be changed, in order to express that the distance between
two objects is within multiple distance intervals. Although we
assume the distance metric is Euclidean, other measures, such
as the road network distance, can also be considered.

For convenience, we use nb(vi) to denote the set of neigh-
bors of vertex vi ∈ P . We say that two spatial objects ok and
ol form an e-match of an edge (vi, vj), as follows:

Definition 2 (e-match). Two objects ok and ol constitute an
e-match of (vi, vj), if ok and ol match with wi and wj
respectively, and satisfy the distance constraints of (vi, vj).

2In context without ambiguity, we simply call it a pattern.

TABLE I
NOTATIONS AND MEANINGS.

Notation Meaning
D set of spatial objects

oi(xi, yi) spatial object in D, with 2D coordinates (xi, yi)
doc(oi) set of keywords of oi

P spatial pattern with vertex and edge sets V and E
n, m numbers of vertices and edges in V and E
vi, wi vertex vi with keyword wi in P

[li,j , ui,j] distance interval on edge (vi, vj)
nb(vi) set of neighbor vertices of vi ∈ P

P̂ bounded pattern of P
O(o, r) circle with center o and radius r
|oi, oj | the Euclidean distance between oi and oj

Γ join order (in the form of a list of edges)
Ψ SPM query result set

Definition 3 (match). Given a spatial pattern P and a set
S of objects, S is a match of P if: (1) for each edge of P ,
there is an e-match in S; and (2) there does not exist any
proper subset S′ of S such that for each edge of P , there is
an e-match in S′.

Problem 1 (Spatial Pattern Matching). Given a spatial pattern
P , SPM returns all the matches of P in D.

In Figure 3(a), for instance, the four objects connected in
solid lines is a match of the pattern in Figure 3(b), and it is the
answer of this SPM query. We call a set of objects a partial
match of P , if it is a match of a subgraph of P . For example,
in Figure 3(a), any two or three linked objects are a partial
match of the pattern in Figure 3(b).

Lemma 1 (Hardness). The SPM problem is NP-hard.

The SPM problem can be reduced from the classical 3-SAT
problem. The proofs of all the lemmas can be found in the
full version of this paper [18]. A naive solution to solve the
SPM problem takes O(|D|n) time, which is exponential to
the number of vertices n. However, in practice the size of the
pattern is often small, which motivates us to develop efficient
exact algorithms despite the intractability.

B. Baseline Solutions: S-MDJ and S-VF3

To solve the SPM problem, we propose basic solutions by
adapting the existing solutions to GPM [14], [15], which aim
to find subgraphs that match a graph pattern in a graph. Given
an SPM query, the main idea is that we first create an graph
G using P , then simply pattern P to another pattern P ′ by
removing its distance intervals and signs, and find all the
matches of P ′ from G using a GPM solver. Specifically, we
have the following three steps.
Step-1: For each edge (vi, vj) of P , we find a set Oi of objects
that match with wi. For each object o ∈ Oi we perform
two range queries in O(o, li,j) and O(o, ui,j), to get their
answers Li,j and Ui,j which contain objects matched with
wj , respectively. Note that, if vi excludes vj and Li,j 6= ∅,
then we skip o. Next, for each object o′ in Ui,j\Li,j , (o, o′)
forms an e-match of (vi, vj). As a result, we can get all the

0 1 2 3 4 5
0

1

2

3

4

o2:{a, c}

o1:{a, b}

o4:{c, d}

o3:{b, d}
R1 R2

o1 o2 o3 o4R1

R2

R3

a: o1,o2
b: o1
c: o2

b: o3
c: o4
d: o3,o4

a: R1
b: R1,R2
c: R1,R2
d: R2

0 1 2 3 4 5
0

1

2

3

4

o2:{a, c}

o1:{a, b}

o4:{c, d}

o3:{b, d}
R1 R2

o1 o2 o3 o4R1

R2

R3

a: o1,o2
b: o1
c: o2

b: o3
c: o4
d: o3,o4

a: R1
b: R1,R2
c: R1,R2
d: R2

(a) A set of objects (b) An IR-tree
Fig. 5. An example of IR-tree.

e-matches of this edge. In case that the sign of the edge is
vi ← vj or vi ↔ vj , we can perform a similar computation.
Step-2: For the two objects in each e-match, we create two
vertices with wi and wj resp., and link them with an edge.
Step-3: We generate pattern P ′ by removing distance intervals
and signs from P . Afterwards, any GPM solution can be
applied to extracting all the matches of P ′ from G.

In this paper, we use two GPM solutions MD-Join [14] and
VF3 [15] and denote the adapted algorithms by S-MDJ and
S-VF3 respectively. Their time complexities are O(m|D|2 +
|D|n), since there are at most |D|2 e-matches for each edge
and the total number of matches could be |D|n.

In Step-1, we need to perform keyword search and range
queries over the dataset D. To facilitate this step, we use
the IR-tree structure [1] to index the objects in D. To build
the IR-tree, we first build an R-tree and then associate an
inverted file to each node 3 as follows. In each leaf node,
each keyword is associated with a postings list, i.e., the list
of objects containing the keyword. In the inverted file of each
non-leaf node, each keyword is associated the list of child
nodes containing it. Figure 5(a) gives an example of four
objects {o1, · · · , o4}, and the IR-tree built for these objects
is depicted in Figure 5(b). The inverted files of nodes are
described in the dashed rectangle boxes.

III. THE MPJ ALGORITHM

The major problem of baseline solutions is that, to answer
an SPM query, it needs to generate a graph G and a pattern
P ′, before running a GPM solution. This may not be efficient,
when D is large. To improve the performance, in this section
we propose a multi-pair-join (MPJ) algorithm by adapting the
classical multi-way join [14], which is easy to implement.

We first propose a join algorithm called pair-join (PJ) to
find all the e-matches for each edge of P . Based on PJ, we
develop the MPJ algorithm, which joins these e-matches of
single edges, according to a particular order, to obtain all the
matches of P . In Figure 6, we show the query process of MPJ
for the pattern in Figure 6(d) with a particular join order. We
first present PJ in Section III-A, then discuss the join order
and the MPJ algorithm in Sections III-B and III-C respectively.

A. The PJ Algorithm

We first consider edges with signs vi–vj and vi→vj . We
will consider the other two kinds of signs later. To compute

3To avoid ambiguity, we use “node” to mean “IR-tree node”, and “vertex”
to mean “vertex” of spatial pattern in this paper.

d -

d +

p.mbr

q.mbr

li,j
ui,j

ui,j

li,j

p.mbr p.mbr

school

house

parkstation

[0.3, 1.0]

[0.0, 0.2][0.2, 0.4]

[0.0, 0.3]

house

parkstation

[0.2, 0.4]

[0.0, 0.3]

house

station

[0.2, 0.4]

house

parkstation

[0.2, 0.4]

[0.0, 0.3]

[0.0, 0.2]

school

house

marketstation

[0.2, 1.0]

[0.0, 0.3][0.2, 0.5]

[0.0, 0.3]

(d)(c)(b)(a)

Fig. 6. Illustrating the process of MPJ.

the e-matches of an edge, we assume that there is an IR-tree
built for D. The rationales of adopting the IR-tree index are
two-fold: (1) IR-tree is a kind of R-tree, and it can easily
handle edges with both inclusion-ship and exclusion-ship in
the join process; (2) The IR-tree has been demonstrated to be
very efficient for joint spatial keyword queries [19]. Next, we
will discuss these two advantages in more detail.

Given an edge, PJ exploits the IR-tree and finds matched
pairs of non-leaf nodes level by level in a top-down manner,
and finally finds all the e-matches in the leaf level. We now
illustrate the concept of matched pairs of nodes. Let p and q
be two non-leaf nodes, whose inverted files contain wi and
wj respectively, in the same level of the IR-tree. We define
their MBRs’ maximum distance d+ as the maximum distance
between any two points in their MBRs. Their minimum
distance d− can be defined similarly. Figure 7(a) illustrates
d+ and d−. We call (p, q) a matched pair of nodes, if
[d−, d+] ∩ [li,j , ui,j] 6= ∅.

MinDist MaxDist

Distance pruning

label(vi)

li,j

ui,j

ui,j

UB-region LB-region

li,j

label(vj) label(vj)

A B

C

20

101000

d -

d +

p.mbr

q.mbr

li,j
ui,j

ui,j

li,j

p.mbr p.mbr

MinDist MaxDist

Distance pruning

label(vi)

li,j

ui,j

ui,j

UB-region LB-region

li,j

label(vj) label(vj)

A B

C

20

101000

d -

d +

p.mbr

q.mbr

li,j
ui,j

ui,j

li,j

p.mbr p.mbr

MinDist MaxDist

Distance pruning

label(vi)

li,j

ui,j

ui,j

UB-region LB-region

li,j

label(vj) label(vj)

A B

C

20

101000

d -

d +

p.mbr

q.mbr

li,j
ui,j

ui,j

li,j

p.mbr p.mbr

(a) d+ and d− (b) Considering ui,j (c) Considering li,j
Fig. 7. Illustrating the candidate pairs in PJ.

Intuitively, if p and q’s MBRs are far from, or too close
to each other, then we cannot find any e-match from their
MBRs. We illustrate this using Figures 7(b) and 7(c). If q’s
MBR does not intersect with the outer area bounded with
solid line in Figure 7(b), then it cannot be a candidate of p,
since their distance must be larger than ui,j ; Similarly, if q’s
MBR is fully covered by the outer area bounded with solid
line in Figure 7(c), then q cannot be a candidate of p, since
their distance must be less than li,j . By finding the candidate
pairs level by level, we can safely prune a large number of
unmatched pairs of nodes. Algorithm 1 presents PJ.

The input of PJ is the root of an IR-tree, and an edge (vi,
vj)∈P , where λ denotes the sign from vi to vj , and the output
is Φ, a map of all the e-matches. It first initializes h, the height
of the IR-tree, and Φ, a map where the key is a node/object
and the value is the list of its candidates (line 1). Then, it
initializes a matched pair for the root node (line 2). Next, it
finds candidate pairs level by level (lines 3-19). Specifically,
we enumerate all the candidate pairs in Φ (lines 5,8). Note

that Φ.keySet gets all the keys of Φ and Φ.getKey(p) returns
the value of the key p. For each pair (p, q), we get its child
pairs which contain wi and wj respectively by checking their
inverted files using function invFile(w) (lines 7,9). For each
child pair (p′, q′), we compute its MBRs’ maximum and
minimum distances (lines 10-11). Note if p is a leaf node,
d+ and d− equal to |p′, q′|. If vi excludes vj and d+ is less
than li,j , we mark the boolean variable flag as true and skip
p′ (lines 12-14,17). Otherwise, if it is a matched pair, we put
q′ into Λ, a list for collecting p′’s candidates (lines 15-16).
After that, p′ and its candidates are collected into a new map
Φ′ (line 18). The map Φ of candidate pairs is updated level
by level (line 19). Finally, we return Φ (line 20).

Algorithm 1: PJ
Input: root, wi, wj , [li,j , ui,j], λ;
Output: Φ, all the e-matches;

1 h← height(root), Φ← ∅;
2 Λ.add(root), Φ.add(root,Λ);
3 for i← 1 to h do
4 Φ′ ← ∅;
5 for p ∈ Φ.keySet() do
6 Λ← ∅, flag ← false;
7 for p′ ∈ p.invFile(wi) do
8 for q ∈ Φ.getKey(p) do
9 for q′ ∈ q.invFile(wj) do

10 d− ←MinDist(p′.mbr, q′.mbr);
11 d+ ←MaxDist(p′.mbr, q′.mbr);
12 if d+<li,j then
13 if λ is “→” then
14 flag ← true; break;
15 else if d− ≤ ui,j then
16 Λ.add(q′);

17 if flag=true then break;

18 if flag=false then Φ′.add(p′,Λ);

19 Φ← Φ′; //update Φ

20 return Φ;

We now consider edges with other two kinds of edges. For
vi←vj , we can reverse it as vj→vi and run PJ directly. For
vi↔vj , we can run PJ for edges vi→vj and vj→vi separately,
and then return the e-matches satisfying both of them, i.e., the
intersection of these two sets of e-matches.

B. The Join Order for MPJ

The order of performing joins for the edges has a significant
effect on the overall performance [16], [14]. We illustrate this
by two orders of performing PJ in Example 1.

Example 1. Consider a pattern P with vertices {v1, v2, v3},
and edges {v1–v2, v2–v3, v3–v1}. Suppose there are 2, 50,
and 1000 e-matches for these edges respectively. �

Order1: We run PJ for edges v1–v2 and v2–v3 first, and then
get at most 100 tuples for v1–v2–v3 by linking their results.
Then for v3–v1, we do not need to run PJ, since we can
just need to scan each tuple and check whether the distance
between the third and first objects is in [l1,3, u1,3].
Order2: We consider edges v2–v3 and v3–v1 first, and then
may get 50,000 tuples for v2–v3–v1. Next, for v1–v2, we check

whether each of these tuples satisfies its distance constraint.
Clearly, Order1 tends to need less computational cost than

Order2. The reason is that for edges with mutual inclusion
(e.g., v3–v1 in Order1), we may skip performing PJ for
them, because we can scan the linked tuples and check their
distance constraints. However, for edges with other signs, we
cannot skip them. For example, let us modify Example 1 by
replacing v3–v1 with v1→v3 and using Order1. For any tuple
<o1,o2,o3> matched with v1–v2 and v2–v3, we cannot claim
it is a match of P , even if l1,3 ≤ |o1, o3| ≤ u1,3. This is
because, there may exist other objects matched with w3 in the
circle O(o1, l1,3), which invalidates this tuple.

Intuitively, a good join order should avoid performing PJ
for edges having large numbers of e-matches with mutual
inclusion. How to quickly estimate the numbers of e-matches
for such edges without running PJ? Some existing cost
models are based on R-trees [20] and density histograms [21].
However, these models assume that the entire dataset(s) are
possible instances of each node, whereas in our case the
pattern instances include only objects that satisfy the keyword
constraints at each vertex. In addition, as shown in Figure 7,
the regions to be queried in SPM are irregular, i.e., they are
neither circles nor rectangles, which renders approaches based
on rectilinear space division inaccurate. To address this issue,
we propose an effective and efficient estimation method.
Estimation. Consider vertices vi and vj with mutual inclusion,
i.e., vi–vj . Let Oi and Oj be the sets of objects matched
with wi and wj respectively. We consider a random pair (oi,
oj) of objects, where oi ∈ Oi and oj ∈ Oj , as a random
variable. We propose Lemma 2, which states that, by sampling
certain number of matched pairs, we can accurately estimate
the number r of e-matches.

Lemma 2 (Estimation). Suppose p (p>0) is the probability
that a random pair is a matched pair. Let Xi be the number
of sampled pairs to see the i-th matched pair after seeing the
(i–1)-th matched pair. Let the total number of sampled pairs
to see s matched pairs be Y =

∑s
i=1Xi. Then, for any 0<ε<1,

Pr (|Y − E[Y]| ≥ εE[Y]) ≤ δ, (1)

where δ=exp
(
− sε28

)
.

It is easy to observe that, the random variables Xi’s follow
the geometric distribution with success probability p, and so
the expectation is 1

p [22]. Since Y =
∑s
i=1Xi, we get E[Y]= sp

and also p= s
E[Y] . On the other hand, since there are |Oi| · |Oi|

pairs and r matched pairs, we have p= r
|Oi|·|Oi| . Thus, we

conclude E[Y]= sr · |Oi| · |Oi|. By Lemma 2, E[Y] can be well
approximated by Y . Hence, given ε and δ, we can sample
pairs until seeing s matched pairs, where s=O(8

ε2 ln 1
δ), and

well estimate E[Y], which further implies r ≈ s
Y · |Oi| · |Oj |.

To make this guarantee more concrete, consider the follow-
ing example. Let ε and δ be 0.25. Then we have s=177, which
means we can stop the sampling after seeing 177 e-matches.
This is very efficient in practice if there are over thousands of
e-matches. Note that, to avoid infinite sampling for the case

p=0, we introduce a threshold θ ∈ [0, 1], and stop sampling if
we cannot see s e-matches after sampling |Oi| · |Oj | · θ pairs.

In addition, since the goal of the estimation is to determine
a good join order for a query pattern, we only need to derive
the topological orders of the cost of these edges. This means
that, it may not be necessary to accurately estimate the cost,
and thus we do not need to set very small values for ε and δ.

Order. The optimal order can be computed by dynamic
programming [16]. However, this method is inefficient due
to the large solution space [16], [14], beating the purpose of
finding a good order faster than the time needed for query
evaluation. To alleviate this issue, we propose an efficient
greedy solution (i.e., heuristic query optimization), called
MPJOrder. Specifically, we perform two steps: First, we
perform PJ for edges that are not with mutual inclusion.
Second, we randomly select a starting vertex, and perform
graph search incrementally starting from this vertex. During
the search process, we always greedily visit edges, whose
estimated numbers of e-matches are the smallest, and put the
visited edges into Γ, a list keeping the order. We call an edge
a forward edge, if at least one of its vertices is not in edges
of the current Γ, or a backward edge if all of its vertices are
in edges of the current Γ.

Algorithm 2: MPJOrder
Input: root, P , δ, ε, θ;
Output: Γ, the join order of MPJ;

1 Γ← ∅, Q← ∅, U ← ∅, Υ← ∅;
2 for each edge (vi, vj) of P do
3 if vi→vj or vi←vj or vi↔vj then
4 Φ← perform PJ for this edge;
5 Υ.add((vi, vj), Φ);

6 randomly select a vertex v ∈ P , and add it to U ;
7 for u ∈ nb(v) do
8 if v–u then Q.add((v, u), estimate(v–u));
9 else Q.add((v, u), Υ.get((v, u).size);

10 while Q.size > 0 do
11 (vi, vj)← Q.pop();
12 Γ.add((vi, vj));
13 if vi ∈ U and vj ∈ U then continue;
14 v ← a newly considered vertex in (vi, vj) and U ;
15 for u ∈ nb(v) ∧ U Γ.add((v, u));
16 for u ∈ nb(v) \ U do
17 if v–u then Q.add(v, u), estimate(v–u));
18 else Q.add(v, u), Υ.get(v, u).size);

19 U .add(v);

20 return Γ;

Algorithm 2 presents MPJOrder. Given an IR-tree, a
pattern P , some parameters of estimation (δ, ε, and θ), it
outputs the join order Γ. We first initialize some variables,
where Γ is a list, Q is a priority queue in which edges are
ranked by their estimated numbers of e-matches in ascending
order, U keeps the visited vertices, and Υ maintains the join
results for edges that are not with mutual inclusion. Then, we
run PJ for edges that are not with mutual inclusion (lines 2-5).
Next, we randomly select a vertex v and put its edges into Q
(lines 6-9). Note that the function estimate(v-u) performs
sampling to estimate the number of matched pairs. In the loop

(lines 10-19), we first add the edge with the minimum number
of e-matches to Γ (lines 11-12). If the edge is backward (line
13), we continue to dequeue an edge from Q; otherwise, we
enqueue v’s neighbors (lines 14-18). The new vertex v is
marked as visited (line 19). Finally, Γ is returned (line 20).

We illustrate the steps of MPJOrder by Example 2.

Example 2. Continue Example 1, and let v1 be the starting
vertex in MPJOrder. Q is initialized by two forward edges
v1–v2 and v1–v3. First, we dequeue v1–v2, add it to Γ, and
add v2–v3 to Q. Then, we dequeue v2–v3 and add it to Γ.
Also, v1–v3 is added to Γ because it is a backward edge. �

C. The MPJ Algorithm

After computing the join order by MPJOrder, we handle
the edges one by one following the order, and link the results
incrementally as illustrated by Figure 6. Specifically, for
forward edges, we expand the partial matches, such that they
match with a larger subgraph of P ; while for backward edges,
we prune some partial matches using the distance constraints.
The detailed steps of MPJ are described in [18].

Lemma 3. The time complexity of MPJ is O(mθ|D|2+|D|n).

IV. THE MSJ ALGORITHM

In this section, we propose a new algorithm called the multi-
star-join (or MSJ). Compared with MPJ, the main advantages
of MSJ are three-fold: First, we introduce a novel concept
called bounded pattern, which can be computed by dynamic
programming. We show that, it is not only useful for refining
the pattern but also pruning partial matches during the join
process. Second, MSJ determines the join order in a more
efficient way, which does not rely on sampling. Third, in the
join process MSJ considers the edges in a collective manner
with two pruning criteria. With such optimizations, MSJ is able
to achieve higher efficiency than MPJ, as shown in Section V.

A. The Bounded Pattern

The design of the bounded pattern is based on the key
observation that, the distance between any two vertices in P
can be bounded. We illustrate this by Example 3.

v3

v1 v2

v4

[0, 1]

[2, 3]

[3, 8]
Case 1: [l2,3, u2,3] = [5, 6]

Case 2: [l2,3, u2,3] = [0, 5]

Case 3: [l2,3, u2,3] = [1, 5]

v1

v4

v3

[0, 2] [0, 1]

[0, 3]

v2

[0, 8] [0, 5]
[0, 6]

Two orders:

Γ1={(v1, v2), (v2, v3), (v1, v4), (v4, v3)}

v3 is an anchor vertex and its anchor edge is (v3, v1)

v4 is an anchor vertex and its anchor edge is (v4, v2)

Γ2={(v3, v2), (v3, v4), (v4, v1), (v2, v1)}

No anchor vertex can be found from this order

[0, 1]

[4, 7]

v1-v2-v4: [2, 9]

v1-v3-v4: [3, 6]
v1-v4: [3, 6]

v2-v1-v3: [3, 8]

v2-v4-v3: [2, 7]
v2-v3: [3, 7]

v1 v3

v4v2 [1, 2]

[4, 5]

Fig. 8. Illustrating the bounded pattern.

Example 3. Consider a pattern P in Figure 8 where the four
edges are in solid lines. Since the distance intervals on v1–
v2 and v2–v4 are [4, 7] and [1, 2] respectively, the lower
and upper bounds of the distance from v1 to v4 are 2 and
9 by triangle inequality. Similarly, we can derive the bounds
using v1–v3 and v3–v4. Thus, the distance between two objects
matched with v1 and v4 in a match of P must be in [3, 6]. �

Given a spatial pattern P , we define its bounded pattern P̂
as a graph, which is a clique satisfying properties:
• There are n vertices {v̂1, v̂2, · · · , v̂n};
• Each vertex is linked with each other vertex;
• ∀(v̂i, v̂j) of P̂ , its distance interval [l̂i,j , ûi,j] is initialized

as [li,j , ui,j] if (vi, vj)∈P , or [0,+∞] if (vi, vj)/∈P .
• The distance intervals on all the edges are further com-

puted by dynamic programming using Lemmas 4 and 5.

Lemma 4 (Upper bound). The upper bound distance between
any two vertices v̂i and v̂j in P̂ is

ûi,j = min
1≤k≤n

{ûi,j , ûi,k + ûk,j}. (2)

Apparently, ûi,j equals to the shortest path distance from v̂i
to v̂j , if we replace the distance interval on each edge (v̂i, v̂j)
by a value ûi,j , so we can use Floyd-Warshall algorithm [23].

Lemma 5 (Lower bound). The lower bound distance between
any two vertices v̂i and v̂j in P̂ is

l̂i,j = max
1≤k≤n

0 [l̂i,k, ûi,k] ∩ [l̂k,j , ûk,j] 6= ∅
l̂k,j − ûi,k ûi,k < l̂k,j
l̂i,k − ûk,j l̂i,k > ûk,j

.

(3)

Continue Example 3, and let i=1, j=4. When k=2, s-
ince l̂1,2=4>û2,4=2, we have l̂1,4=2; when k=3, since û1,3=
1<l̂3,4=4, we have l̂1,4=3. Thus, we have l̂1,4=3 by Lemma 5.

Refining patterns. We can observe that, when computing
the lower and upper bound distances between any two vertices
using Eqs (2) and (3), we have considered all the paths
between them, and so they are globally tight. This implies,
we can use them to refine P , which may reduce the query
computational cost.

Let e=vi–vj be an edge with mutual inclusion. We have the
following refining criteria:
Ê If [li,j , ui,j]∩ [l̂i,j , ûi,j]=∅, then P is a wrong pattern, since
no pair of objects can satisfy the distance constraint.
Ë If [l̂i,j , ûi,j] ⊂ [li,j , ui,j], then we delete (vi, vj), since any
set of objects matching with P–{e} is also a match of P .
Ì If neither criterion Ê nor criterion Ë can be applied, then
we refine [li,j , ui,j] as [li,j , ui,j] ∩ [l̂i,j , ûi,j], since any set of
objects matched with P is also a match of P̂ .

We illustrate above refining criteria by Example 4.

v3

v1 v2

v4

[0, 1]

[2, 3]

[3, 8]
Case 1: [l2,3, u2,3] = [5, 6]

Case 2: [l2,3, u2,3] = [0, 5]

Case 3: [l2,3, u2,3] = [2, 5]

v1

v4

v3
[0, 2] [0, 1]

[0, 3]

v2

[0, 8] [0, 5]

[0, 6]

Two orders:

Γ1={(v1, v2), (v2, v3), (v1, v4), (v4, v3)}

v3 is an anchor vertex and its anchor edge is (v3, v1)

v4 is an anchor vertex and its anchor edge is (v4, v2)

Γ2={(v3, v2), (v3, v4), (v4, v1), (v2, v1)}

No anchor vertex can be found

[0, 1]

[4, 7]

v1-v2-v4: [2, 9]

v1-v3-v4: [3, 6]
v1-v4: [3, 6]

v2-v1-v3: [3, 8]

v2-v4-v3: [2, 7]
v2-v3: [3, 7]

v1 v3

v4v2 [1, 2]

[4, 5]

Fig. 9. Illustrating pattern refining.

Example 4. Consider a pattern in Figure 9, and the edge
e= (v2, v3) has three different cases. Note that [l̂2,3,û2,3] is
always a subinterval of [1, 4]. If [l2,3, u2,3]=[5, 6], then it is

a wrong pattern by criterion Ê; if [l2,3, u2,3]=[0, 5], then we
delete e by criterion Ë; and if [l2,3, u2,3] =[2, 5], we update
it as [2, 4] by criterion Ì. �

If the relationship between vi and vj is not mutual inclusion,
we simply replace criteria Ë and Ì by criterion Í as below.
Í If ûi,j<ui,j , we simply refine [li,j , ui,j] as [li,j , ûi,j].

Notice that in criterion Í, li,j is not updated. The reason
is that, if vi excludes vj , then for any objects os and ot
matched with wi and wj respectively, although |os, ot| may
be in [l̂i,j , ûi,j] where l̂i,j>li,j and ûi,j<ui,j , there may exist
other objects matched with wj in O(os, li,j), which invalids
this pair, since vi excludes vj , and so we cannot increase li,j .

B. The Join Order for MSJ

With a careful study, we find that MPJOrder has two
limitations: (1) among all the possible object pairs for two
vertices, if only a very small proportion (e.g., 0.01%) of them
could constitute e-matches, then we have to sample many
pairs according to Lemma 2. (2) it may not be necessary
to accurately estimate the number of e-matches for each
edge, since the goal is to determine a topology order. Let
us reconsider Example 1. Since the numbers of e-matches for
the edges vary greatly, we may determine the order without
estimating them accurately. To avoid these issues, we propose
another simple yet effective and efficient method to determine
the join order, denoted by MSJOrder.
MSJOrder relies on a key observation that, in an IR-tree

(or other tree-based indexes), with a typical node capacity
in the hundreds and a fill-factor of approximately 0.7, the
leaf level makes up well beyond 99% of the index [19].
This implies that, the number of non-leaf nodes is much
smaller than that of leaf nodes. Meanwhile, the non-leaf nodes,
especially those in the lowest level, generally well summarize
the objects’ locations, which inspires the design of PJ. For
example, given an edge (vi, vj), if the maximum and minimum
distances between two nodes’ MBRs are larger (smaller) than
ui,j (li,j), then all the object pairs from them cannot be
matched. Therefore, we propose to use the number of matched
non-leaf node pairs to approximate the join order.

Specifically, we perform three steps in MSJOrder. First,
for each edge, we follow PJ algorithm except the last step
of handling leaf nodes, and find all the matched pairs of
non-leaf nodes in the lowest level. Second, we count the
number of matched pairs of non-leaf nodes for each edge.
Third, we perform the same greedy algorithm as that of
MPJOrder, where the estimated numbers of e-matches of
edges are replaced by their numbers of matched non-leaf
node pairs, and obtain a join order Γ. Note that, all the sets
of matched pairs of non-leaf nodes are kept after running
MSJOrder, as they will be reused later in the join process.

C. Two Pruning Criteria

We now introduce two interesting pruning criteria: star-
pruning and anchor-pruning, which greatly speedup the query.
Star-pruning relies on a key observation that, if an object is
in a match of P and matches with wi (i.e., the keyword of

vertex vi), then there are at least |nb(vi)| objects matched with
vi’s neighbors respectively. In other words, if there does not
exist |nb(vi)| objects respectively matched with vi’s neighbors,
then we can safely prune this object. We formally state the
star-pruning by Lemma 6.

Lemma 6 (Star-pruning). Let oi be an object matched with
wi, and ci be an integer variable initialized to be 0. For each
neighbor vj of vi, if there is at least one e-match containing oi
for (vi, vj), then we increase ci by 1. Finally, if ci<|nb(vi)|,
we prune oi.

After obtaining the order Γ by MSJOrder, we compute the
e-matches of all the edges, except those which are backward
with mutual inclusion, as their distance intervals will be
considered in the join process. By scanning all these e-matches
only once, we can check whether each object can be pruned
or not by Lemma 6.
Anchor-pruning is motivated it by Example 5.

Example 5. Consider a pattern P with four edges in solid
lines and two orders in Figure 10. From P̂ , we know that
the distance interval on (v̂1, v̂3) is [0, 3]. Suppose we follow
order Γ1, and let the sub-pattern formed only by the first two
edges in Γ1 be P ′. By computing P̂ ′, we know that the distance
between any two objects that match with w1 and w3 in a match
of P ′ is in [0, 13]. After performing the join for the first two
edges in Γ1, if we get a partial match S={o1,o2,o3}, which
matches with P ′, oi matches wi, |o1, o2|=7, and |o2, o3|=1,
we can prune S directly and do not need to consider it
when processing the last two edges in Γ1, because by triangle
inequality, we have |o1, o3|∈ [6, 8] is not in [0, 3]. �

v3

v1 v2

v4

[0, 1]

[2, 3]

[3, 8]
Case 1: [l2,3, u2,3] = [5, 6]

Case 2: [l2,3, u2,3] = [0, 5]

Case 3: [l2,3, u2,3] = [1, 5]

v1

v4

v3
[0, 2] [0, 1]

[0, 3]

v2

[0, 8] [0, 5]

[0, 6]

Two orders:

Γ1={(v1, v2), (v2, v3), (v1, v4), (v4, v3)}

v3 is an anchor vertex and its anchor edge is (v3, v1)

v4 is an anchor vertex and its anchor edge is (v4, v2)

Γ2={(v3, v2), (v3, v4), (v4, v1), (v2, v1)}

No anchor vertex can be found

[0, 1]

[4, 7]

v1-v2-v4: [2, 9]

v1-v3-v4: [3, 6]
v1-v4: [3, 6]

v2-v1-v3: [3, 8]

v2-v4-v3: [2, 7]
v2-v3: [3, 7]

v1 v3

v4v2 [1, 2]

[4, 5]

Fig. 10. Illustrating anchor vertices.

We call this pruning anchor-pruning. More formally, con-
sider the subgraph formed by the first k edges of Γ be P ′. Let
vi and vj be two vertices in the k′- and k-th edges (k′<k). We
call vj an anchor vertex, if [l̂i,j , ûi,j] ⊂ [l̂i,j

′
, ûi,j

′
], where l̂i,j

′

and ûi,j
′ are the lower and upper bound distances between v̂i

and v̂j in the bounded pattern of P ′. Moreover, the edge (vj ,
vi), which may not be in P , is called vj’s anchor edge. Note
that, a pattern may have multiple anchor vertices. Lemma 7
states that, the anchor vertices are in a small subgraph of P .

Lemma 7. The anchor vertices are in the largest sub-pattern
of P in which each vertex has at least two neighbors. The
graph of the sub-pattern is also known as the 2-core [24] of
the graph of P .

Notice that this pruning highly relies on the join order.

For example, if we use order Γ2 in Figure 10, then we do
not have such pruning. Given an order Γ, to find the anchor
vertices, we first find the vertex set T in the 2-core of the graph
of P . Then, we form a new pattern P ′, which is initialized
as an empty pattern, incrementally by inserting edges of Γ
and anchor edges. Once an edge is inserted, we compute the
bounded pattern of P ′ and check whether the newly added
vertex is an anchor vertex by verifying whether it is in T and
comparing the distance intervals. In addition, if we find the
newly added vertex is an anchor vertex, we insert its anchor
edges and their distance intervals into P ′. After inserting all
the edges of Γ into P ′, we can find all the anchor vertices as
well as their anchor edges.

D. The MSJ Algorithm

Algorithm 3: MSJ
Input: root, P ;
Output: Ψ, all the matches;

1 compute the bounded pattern P̂ and refine P using P̂ ;
2 run MSJOrder and get Γ;
3 find a set Π of anchors vertices from the 2-core of P ;
4 Ψ← ∅, Φ1 ← ∅, Φ2 ← ∅, · · · , Φm ← ∅;
5 for i← 1 to m do
6 if ei is forward or backward without mutual inclusion then
7 Φi ← run PJ for the edge ei;

8 perform star-pruning for Φ1, Φ2, · · · , Φm;
9 for k ← 1 to m do

10 let ek=(vi, vj) be the k-th edge in Γ;
11 if ek is a forward edge then
12 Ψ← Ψ.link(Φk);
13 let v be latest considered vertex in ek;
14 if v ∈ Π then perform anchor-pruning;
15 else
16 if vi–vj then prune some partial matches in Ψ;
17 else prune some partial matches in Ψ by Φk;

18 return Ψ;

Based on the bounded pattern and two pruning criteria, we
develop the MSJ algorithm. We first compute the bounded
pattern P̂ of P using the dynamic programming and refine P .
Then in the query process, we find the matched non-leaf node
pairs for all the edges of P in a collective manner, through
which the join order is computed. Finally, we follow the order
and compute all the matches by linking these e-matches.

Algorithm 3 presents MSJ. The input of MSJ is an IR-tree
and a pattern P , and the output is all the matches of P . We
first compute the bounded pattern P̂ (see the pseudocodes
in [18]) and refine P (line 1). Then, we perform MSJOrder
to obtain the order Γ (line 2). Next, we find the anchors using
the bounded pattern P̂ and the order Γ (line 3). For each edge
of Γ, we find all the e-matches (lines 5-7), where Φ1, Φ2,
· · · , Φm denote the sets of e-matches for all the edges in Γ
respectively. Note that Φi (1≤i≤m) is an empty set if the i-
th edge is backward with mutual inclusion, since its distance
constraint will be considered during the join process. After
that, we perform star-pruning (line 8). The join process (lines
9-17) is similar to that of MPJ, except that when the newly
considered vertex is an anchor vertex, we perform the anchor-
pruning (line 14). Finally, we return all the matches (line 18).

TABLE II
DATASETS USED IN OUR EXPERIMENTS.

Name Objects Unique words Total words
UK 182,317 45,371 550,663
NY 485,059 116,546 1,143,013
LA 724,952 161,489 1,833,486
TW 2,000,000 715,565 9,926,629

(b) (c) (d) (e) (f)

(h) (i) (j) (k) (l)

(a)

(g)

Fig. 12. The structures of spatial patterns.

and cinemas) in UK (www.pocketgpsworld.com). Datasets NY
and LA are collected using Google Place API in New York
and Los Angeles, respectively. In these datasets, each object
has a set of keywords (e.g., “food”), and a pair of latitude
and longitude values representing its location. Dataset TW is
crawled from Twitter in US. Each geo-tweet is treated as a
spatial object, its keywords are extracted from the tweet, and
its location is a pair of latitude and longitude values.

Patterns. To create spatial patterns for the experiments,
we first make 12 different undirected graphs (see Figure 12).
These graphs varies in terms of number of nodes and edges.
Some of the patterns discussed before (e.g., the triangular pat-
tern in Figure 2(b) and the star-shaped pattern in Figure 3(b))
are also included here. More example patterns can be found in
the full version [18]. For each graph G in Figure 12, a spatial
pattern for each dataset is generated by three steps:
Step-1: For each vertex v ∈G, we add a keyword randomly
selected following the distribution of keywords’ frequencies
(i.e., a keyword contained by more objects has a higher
probability to be selected).
Step-2: For each vertex vi with one of its neighbor vj , we
introduce a parameter η=90% such that the probabilities for
the four different signs, i.e., vi→vj , vj←vi, vi↔vj , and vi–vj ,
are η×(1–η), η×(1–η), (1–η)×(1–η), and η×η respectively.
Step-3: For each edge (vi, vj), we attach a distance interval
[li,j , ui,j] to it. If the edge is of sign vi–vj , li,j is a random
value in [0, 1km] and the interval length, i.e., ui,j−li,j , follows
a Gaussian distribution with mean 1km and standard deviation
1km; otherwise, li,j is a random value in [0, 10km] and the
interval length follows a Gaussian distribution with mean 5km
and standard deviation 5km.

By following steps above, for each structure, we generate
20 patterns with each having at least one match in the dataset.
Thus, there are 240 patterns for each dataset.

Queries. We use the IR-tree index [21], where the fanout
B = 100, i.e., the maximum number of children of each node,
the non-leaf nodes are kept in memory, and the leaf nodes
are stored in disk. The inverted object list of each keyword,
used by MPJOrder, is stored in a single file on disk. We
consider five parameters: ε (MPJOrder), δ (MPJOrder), γ

TABLE III
PARAMETER SETTINGS.

Parameter Range Default
ε (MPJ) 0.15, 0.2, 0.25, 0.3, 0.35 0.25
δ (MPJ) 0.15, 0.2, 0.25, 0.3, 0.35 0.25
γ 0.2, 0.6, 1.0, 1.5, 2.0 1.0
η 60%, 70%, 80%, 90%, 100% 90%
χ 20%, 40%, 60%, 80%, 100% 100%

(length of distance intervals), η (percentages of signs), and χ
(percentage of objects). The ranges of these parameters and
their default values are shown in Table III. When varying a
certain parameter, the values for all the other parameters are
set to their default values. We implement our algorithms in
Java, and run experiments on a machine having a quad-core
Intel i7-3770 3.40GHz processor, 16GB of memory, and a 1TB
of disk, with Ubuntu-12.04.1 installed.

B. Experimental Results

1) A Case Study: We consider the UK dataset, and two
patterns. The first pattern is shown in the top-left panel of
Figure 4 and it can be used to find houses that are close
to stations, schools, and parks, but not too close to schools
and stations (i.e., avoiding noise and crowd). The second
pattern is depicted in Figure 14(a). It can be applied to finding
houses which are close to churches, galleries, shops, hospitals,
and stations, but not too close to hospitals and stations (i.e.,
avoiding infection and crowd). We run algorithm MSJ for SPM
queries. Due to the space limitation, we only show one match
for each pattern. For comparison, we use the mCK query [6],
[4], whose input is the set of keywords in a pattern.

The results of SPM query and mCK query of the first
pattern are depicted in Figure 4 and Figures 13 respectively.
From Figure 4, we can observe that the four places in red
balloons well match with the pattern, while the result of the
mCK query is different, i.e., the distance from the house
to the school is less than 0.4km, which is not expected by
the user. The reasons are that: (1) the mCK query does not
consider the explicit distance requirements among the objects;
and (2) it also does not take the exclusion-ship of edges (e.g.,
house→school) into consideration. Similarly, in Figure 14, the
SPM query can find a set of objects exactly matched with the
pattern in Figure 14(a). In contrast, the mCK query may find a
house which is too close to the hospital and station (i.e., their
distances are less than 1km). Therefore, we conclude that the
SPM query is more effective for finding spatial objects with
various distance conditions.

2) Effectiveness of Estimation Method in MPJ: Recall that
in MPJ, we estimate the number of e-matches for each edge
with mutual inclusion using a sampling method. By Lemma 2,
the estimation method theoretically guarantees that, the failure
probability is at most δ if the multiplicative error is set as ε.
In this experiment, we evaluate the effect of ε and δ on the
actual error. Consider an edge in a pattern. Let r and r̂ be its
actual and estimated numbers of e-matches, respectively. The
estimation error can be defined as:

error =
|r − r̂|
r

. (4)

Fig. 11. Datasets used in our experiments.

(b) (c) (d) (e) (f)

(h) (i) (j) (k) (l)

(a)

(g)

(b) (c) (d)

(e) (f) (h)

(i) (j) (k) (l)

(a)

(g)

Fig. 12. structures of patterns.

TABLE II
DATASETS USED IN OUR EXPERIMENTS.

Dataset Objects Unique words Total words
UK 182,317 45,371 550,663
NY 485,059 116,546 1,143,013
LA 724,952 161,489 1,833,486
TW 2,000,000 715,565 9,926,629

(b) (c) (d) (e) (f)

(h) (i) (j) (k) (l)

(a)

(g)

Fig. 11. The structures of spatial patterns.

and cinemas) in UK (www.pocketgpsworld.com). Datasets NY
and LA are collected using Google Place API in New York
and Los Angeles, respectively. In these datasets, each object
has a set of keywords (e.g., “food”), and a pair of latitude
and longitude values representing its location. Dataset TW is
crawled from Twitter in US. Each geo-tweet is treated as a
spatial object, its keywords are extracted from the tweet, and
its location is a pair of latitude and longitude values.

Patterns. To create spatial patterns for the experiments,
we first make 12 different undirected graphs (see Figure 11).
These graphs varies in terms of number of nodes and edges.
Some of the patterns discussed before (e.g., the triangular pat-
tern in Figure 2(b) and the star-shaped pattern in Figure 3(b))
are also included here. More example patterns can be found in
the full version [18]. For each graph G in Figure 11, a spatial
pattern for each dataset is generated by three steps:
Step-1: For each vertex v ∈G, we add a keyword randomly
selected following the distribution of keywords’ frequencies
(i.e., a keyword contained by more objects has a higher
probability to be selected).
Step-2: For each vertex vi with one of its neighbor vj , we
introduce a parameter η=90% such that the probabilities for
the four different signs, i.e., vi→vj , vj←vi, vi↔vj , and vi–vj ,
are η×(1–η), η×(1–η), (1–η)×(1–η), and η×η respectively.
Step-3: For each edge (vi, vj), we attach a distance interval
[li,j , ui,j] to it. If the edge is of sign vi–vj , li,j is a random
value in [0, 1km] and the interval length, i.e., ui,j−li,j , follows
a Gaussian distribution with mean 1km and standard deviation
1km; otherwise, li,j is a random value in [0, 10km] and the
interval length follows a Gaussian distribution with mean 5km
and standard deviation 5km.

By following steps above, for each structure, we generate
20 patterns with each having at least one match in the dataset.
Thus, there are 240 patterns for each dataset.

Queries. We use the IR-tree index [21], where the fanout
B = 100, i.e., the maximum number of children of each node,
the non-leaf nodes are kept in memory, and the leaf nodes
are stored in disk. The inverted object list of each keyword,
used by MPJOrder, is stored in a single file on disk. We
consider five parameters: ε (MPJOrder), δ (MPJOrder), γ

TABLE III
PARAMETER SETTINGS.

Parameter Range Default
ε (MPJ) 0.15, 0.2, 0.25, 0.3, 0.35 0.25
δ (MPJ) 0.15, 0.2, 0.25, 0.3, 0.35 0.25
γ 0.2, 0.6, 1.0, 1.5, 2.0 1.0
η 60%, 70%, 80%, 90%, 100% 90%
χ 20%, 40%, 60%, 80%, 100% 100%

(length of distance intervals), η (percentages of signs), and χ
(percentage of objects). The ranges of these parameters and
their default values are shown in Table III. When varying a
certain parameter, the values for all the other parameters are
set to their default values. We implement our algorithms in
Java, and run experiments on a machine having a quad-core
Intel i7-3770 3.40GHz processor, 16GB of memory, and a 1TB
of disk, with Ubuntu-12.04.1 installed.

B. Experimental Results

1) A Case Study: We consider the UK dataset, and two
patterns. The first pattern is shown in the top-left panel of
Figure 4 and it can be used to find houses that are close
to stations, schools, and parks, but not too close to schools
and stations (i.e., avoiding noise and crowd). The second
pattern is depicted in Figure 13(a). It can be applied to finding
houses which are close to churches, galleries, shops, hospitals,
and stations, but not too close to hospitals and stations (i.e.,
avoiding infection and crowd). We run algorithm MSJ for SPM
queries. Due to the space limitation, we only show one match
for each pattern. For comparison, we use the mCK query [6],
[4], whose input is the set of keywords in a pattern.

The results of SPM query and mCK query of the first
pattern are depicted in Figure 4 and Figures 12 respectively.
From Figure 4, we can observe that the four places in red
balloons well match with the pattern, while the result of the
mCK query is different, i.e., the distance from the house
to the school is less than 0.4km, which is not expected by
the user. The reasons are that: (1) the mCK query does not
consider the explicit distance requirements among the objects;
and (2) it also does not take the exclusion-ship of edges (e.g.,
house→school) into consideration. Similarly, in Figure 13, the
SPM query can find a set of objects exactly matched with the
pattern in Figure 13(a). In contrast, the mCK query may find a
house which is too close to the hospital and station (i.e., their
distances are less than 1km). Therefore, we conclude that the
SPM query is more effective for finding spatial objects with
various distance conditions.

2) Effectiveness of Estimation Method in MPJ: Recall that
in MPJ, we estimate the number of e-matches for each edge
with mutual inclusion using a sampling method. By Lemma 2,
the estimation method theoretically guarantees that, the failure
probability is at most δ if the multiplicative error is set as ε.
In this experiment, we evaluate the effect of ε and δ on the
actual error. Consider an edge in a pattern. Let r and r̂ be its
actual and estimated numbers of e-matches, respectively. The
estimation error can be defined as:

error =
|r − r̂|
r

. (4)

Fig. 13. Parameter settings.

Lemma 8. MSJ completes in O(n4+m|D|2+|D|n) time.

Since the patterns are often small, i.e., n, m� |D|, the time
complexities of MPJ and MSJ are comparable. However, as
shown later, although MPJ is intuitive and easy to implement,
MSJ runs faster than MPJ experimentally, as it refines the
pattern by the bounded pattern and uses two pruning criteria.

V. EXPERIMENTS

A. Setup

Datasets. We use four real datasets. Figure 11 reports their
numbers of objects, as well as the unique and total numbers of
keywords. Dataset UK contains points of interest (e.g., banks
and cinemas) in UK (www.pocketgpsworld.com). Datasets NY
and LA are collected using Google Place API in New York
and Los Angeles, respectively. In these datasets, each object
has a set of keywords (e.g., “food”), and a pair of latitude
and longitude values representing its location. Dataset TW is
crawled from Twitter in US. Each geo-tweet is treated as a
spatial object, its keywords are extracted from the tweet, and
its location is a pair of latitude and longitude values.

Patterns. To create spatial patterns for the experiments,
we first make 12 different undirected graphs (see Figure 12).
These graphs vary in terms of number of nodes and edges.
Four of them have been used in example patterns before, and
the remaining eight graphs are illustrated by examples in the
full version [18]. For each graph G in Figure 12, a spatial
pattern for each dataset is generated by three steps:
Step-1: For each vertex v ∈G, we add a keyword randomly
selected following the distribution of keywords’ frequencies
(i.e., a keyword contained by more objects has a higher
probability to be selected).
Step-2: For each vertex vi with one of its neighbor vj , we
introduce a parameter η=90% such that the probabilities for
the four different signs, i.e., vi→vj , vj←vi, vi↔vj , and vi–vj ,
are η×(1–η), η×(1–η), (1–η)×(1–η), and η×η respectively.
Step-3: For each edge (vi, vj), we attach a distance interval
[li,j , ui,j] to it. If the edge is of sign vi–vj , li,j is a random
value in [0, 1km] and the interval length, i.e., ui,j−li,j , follows
a Gaussian distribution with mean 1km and standard deviation
1km; otherwise, li,j is a random value in [0, 10km] and the
interval length follows a Gaussian distribution with mean 5km
and standard deviation 5km.

By following steps above, for each structure, we generate
20 patterns with each having at least one match in the dataset.
Thus, there are 240 patterns for each dataset.

Queries. We use the IR-tree index [19], where the fanout
B = 100, i.e., the maximum number of children of each node,
the non-leaf nodes are kept in memory, and the leaf nodes

are stored in disk. The inverted object list of each keyword,
used by MPJOrder, is stored in a single file on disk. We
consider five parameters: ε (MPJOrder), δ (MPJOrder), γ
(length of distance intervals), η (percentages of signs), and χ
(percentage of objects). The ranges of these parameters and
their default values are shown in Figure 13. When varying a
certain parameter, the values for all the other parameters are
set to their default values. We implement our algorithms in
Java, and run experiments on a machine having a quad-core
Intel i7-3770 3.40GHz processor, 16GB of memory, and a 1TB
of disk, with Ubuntu-12.04.1 installed.

B. Experimental Results

1) A Case Study: We consider the UK dataset, and two
patterns. The first pattern is shown in the top-left panel of
Figure 4 and it can be used to find houses that are close
to stations, schools, and parks, but not too close to schools
and stations (i.e., avoiding noise and crowd). The second
pattern is depicted in Figure 15(a). It can be applied to finding
houses which are close to churches, galleries, shops, hospitals,
and stations, but not too close to hospitals and stations (i.e.,
avoiding infection and crowd). We run algorithm MSJ for SPM
queries. Due to the space limitation, we only show one match
for each pattern. For comparison, we use the mCK query [7],
[3], whose input is the set of keywords in a pattern.

The results of SPM query and mCK query of the first
pattern are depicted in Figure 4 and Figures 14 respectively.
From Figure 4, we can observe that the four places in red
balloons well match with the pattern, while the result of the
mCK query is different, i.e., the distance from the house
to the school is less than 0.4km, which is not expected by
the user. The reasons are that: (1) the mCK query does not
consider the explicit distance requirements among the objects;
and (2) it also does not take the exclusion-ship of edges (e.g.,
house→school) into consideration. Similarly, in Figure 15, the
SPM query can find a set of objects exactly matched with the
pattern in Figure 15(a). In contrast, the mCK query may find a
house which is too close to the hospital and station (i.e., their
distances are less than 1km). Therefore, we conclude that the
SPM query is more effective for finding spatial objects with
various distance conditions.

2) Effectiveness of Estimation Method in MPJ: Recall that
in MPJ, we estimate the number of e-matches for each edge
with mutual inclusion using a sampling method. By Lemma 2,
the estimation method theoretically guarantees that, the failure
probability is at most δ if the multiplicative error is set as ε.
In this experiment, we evaluate the effect of ε and δ on the
actual error. Consider an edge in a pattern. Let r and r̂ be its

StationPark

House

You are using a browser that is not supported by the
Google Maps JavaScript API. Consider changing

your browser. Learn more Dismiss

Fig. 14. mCK query result for pattern in
Figure 4 (measure: km).

factory

Hotel

BarMetro

[10, 20]

[0, 1][0.5, 1]

[0, 1]

House

stationhospital

gallery

shop church
[0, 0.6][0, 0.8]

[0, 2.0][0, 0.8]

[1.0, 2.0][1.0, 2.0]

Church

House

Shop

Gallery
Station

Hospital

You are using a browser that is not supported by the Google Maps JavaScript API. Consider changing your browser. Learn more Dismiss

Gallery

House
Station

Shop
Hospital

Church

You are using a browser that is not supported by the Google Maps JavaScript API.
Consider changing your browser. Learn more Dismiss

(a) Pattern (b) A match of pattern in (a) (c) mCK query result

Fig. 15. Case study results for the pattern in (a) (measure: km).

actual and estimated numbers of e-matches, respectively. The
estimation error can be defined as: error= |r−r̂|r .

For each dataset, we first collect all the edges, which are
with mutual inclusion (i.e., the signs of edges are “–”), from
all the patterns. Then, we vary the values of ε and δ from
0.15 to 0.35, and run the estimation method (θ=0.5). Finally,
we compute the average error. Note that the actual number of
e-matches is computed by the PJ algorithm.

0.15 0.2 0.25 0.3 0.35
0.05

0.1

0.15

0.2

the value of ε

av
er

ag
e

er
ro

r

NY
LA

0.15 0.2 0.25 0.3 0.35
0.05

0.1

0.15

0.2

the value of δ

av
er

ag
e

er
ro

r

NY
LA

(a) Effect of ε (b) Effect of δ
Fig. 16. Estimation method in MPJ.

We report the average estimation error on NY and LA
datasets in Figure 16. As expected, the error increases when
the values of ε and δ grow. However, the actual error is much
lower than its corresponding theoretical error. For example,
when the values of ε and δ are 0.25, the actual error is around
0.12. In our experiments, we set the values of ε and δ to 0.25.

3) Comparing Join Orders: As mentioned before, the main
difference between MPJOrder and MSJOrder is that, when
determining the orders, MPJOrder uses the numbers of e-
matches for the edges, while MSJOrder considers the num-
bers of matched non-leaf nodes for the edges.

Fig. 17. Efficiency. Fig. 18. Order quality.

We first compare the efficiency of running MPJOrder and
MSJOrder. The results on NY and LA datasets are reported
in Figure 17. We observe that MSJOrder is over an order
of magnitude faster than MPJOrder. The main reason is that
the number of matched non-leaf nodes is much smaller than
that of e-matches, and thus MSJOrder performs very fast.

We further compare the quality of generated orders. Here,
the “quality” of a particular order means its effect on the
efficiency of the join process. For comparison, we also include
a method determining the join order randomly, denoted by
Random. To make a fair comparison, we adapt the MSJ
algorithm such that, for each query, it can find the matches
with any predefined order. We run the adapted MSJ with
orders generated by the three methods on NY and LA datasets
respectively, and report the running time of the join process
in Figure 18 (the time of running these order methods is not
included). Clearly, Random achieves the lowest order quality,
which makes the join cost nearly twice larger than that of other
methods. For MPJOrder and MSJOrder, the join process
takes similar time cost on each dataset. This indicates that they
generate join orders of similar quality. However, MSJOrder
is much faster than MPJOrder, making it a better option.

4) Efficiency Results: We evaluate the efficiency of S-VF3,
S-MDJ, MPJ, and MSJ. The results are reported in Figure 19.
Effect of pattern size. For each dataset, we divide its pat-
terns into five groups according to their vertex numbers.
Figures 19(a)-19(d) report the efficiency for each group. Gen-
erally, with the increase of number of vertices in the patterns,
the performance gaps among these algorithms become larger.
The time cost of S-VF3 and S-MDJ does not always increase
with the number of vertices on the last two datasets. This is
because, when building the graph before running the GPM
solvers, they need to enumerate more pairs and their numbers
fluctuate greatly on different datasets.
MPJ and MSJ are consistently faster than baseline algo-

rithms and MSJ is over an order of magnitude faster than
baseline algorithms. This is because, when computing e-
matches of edges of the pattern, MPJ and MSJ work in a joint
manner, while S-VF3 and S-MDJ perform keyword search
and range query separately. Meanwhile, MSJ is 2 to 5 times
faster than MPJ. The reasons are three-fold. First, MSJ refines
the patterns using their bounded patterns. Second, the pruning
criteria of MSJ are very effective for pruning partial matches.
Third, MSJOrder is more efficient than MPJOrder.

In addition, we ran MPJ and MSJ on a small sub-dataset
(|D|=5,000) of the UK dataset, and found that they achieved
similar efficiency. Thus, for small datasets, MPJ could be a
practical alternative to MSJ, as it is easier to implement.
Effect of the distance interval length. For each edge (vi,
vj) in the patterns, we vary the length (i.e., |ui,j–li,j |) of the

the number of vertices
2 3 4 5 6

tim
e

(s
ec

on
d)

0

2

4

6 S-VF3
S-MDJ
MPJ
MSJ

the number of vertices
2 3 4 5 6

tim
e

(s
ec

on
d)

0

2

4

6 S-VF3
S-MDJ
MPJ
MSJ

the number of vertices
2 3 4 5 6

tim
e

(s
ec

on
d)

0

10

20

30
S-VF3
S-MDJ
MPJ
MSJ

the number of vertices
2 3 4 5 6

tim
e

(s
ec

on
d)

0

100

200

300

400
S-VF3
S-MDJ
MPJ
MSJ

(a) UK (vertex number) (b) NY (vertex number) (c) LA (vertex number) (d) TW (vertex number)

.
0.2 0.6 1.0 1.5 2.0

tim
e

(s
ec

on
d)

0

2

4

6 S-VF3
S-MDJ
MPJ
MSJ

.
0.2 0.6 1.0 1.5 2.0

tim
e

(s
ec

on
d)

0

5

10
S-VF3
S-MDJ
MPJ
MSJ

.
0.2 0.6 1.0 1.5 2.0

tim
e

(s
ec

on
d)

0

10

20

30

40 S-VF3
S-MDJ
MPJ
MSJ

.
0.2 0.6 1.0 1.5 2.0

tim
e

(s
ec

on
d)

0

100

200

300

400 S-VF3
S-MDJ
MPJ
MSJ

(e) UK (distance interval) (f) NY (distance interval) (g) LA (distance interval) (h) TW (distance interval)

2
0.6 0.7 0.8 0.9 1.0

tim
e

(s
ec

on
d)

0

2

4

6

8
S-VF3
S-MDJ
MPJ
MSJ

2
0.6 0.7 0.8 0.9 1.0

tim
e

(s
ec

on
d)

0

2

4

6

8
S-VF3
S-MDJ
MPJ
MSJ

2
0.6 0.7 0.8 0.9 1.0

tim
e

(s
ec

on
d)

0

5

10

15

20

25
S-VF3
S-MDJ
MPJ
MSJ

2
0.6 0.7 0.8 0.9 1.0

tim
e

(s
ec

on
d)

0

100

200

300

400
S-VF3
S-MDJ
MPJ
MSJ

(i) UK (sign) (j) NY (sign) (k) LA (sign) (l) TW (sign)

percentage of objects
20% 40% 60% 60% 100%

tim
e

(s
ec

on
d)

0

1

2

3

4
S-VF3
S-MDJ
MPJ
MSJ

percentage of objects
20% 40% 60% 60% 100%

tim
e

(s
ec

on
d)

0

1

2

3

4 S-VF3
S-MDJ
MPJ
MSJ

percentage of objects
20% 40% 60% 60% 100%

tim
e

(s
ec

on
d)

0

2

4

6

8

10

12
S-VF3
S-MDJ
MPJ
MSJ

percentage of objects
20% 40% 60% 60% 100%

tim
e

(s
ec

on
d)

0

50

100

150

200
S-VF3
S-MDJ
MPJ
MSJ

(m) UK (scalability) (n) NY (scalability) (o) LA (scalability) (p) TW (scalability)
Fig. 19. Efficiency results of SPM queries.

distance interval using a parameter γ, such that the length of
the distance interval increases γ times, where γ ∈{0.2, 0.6,
1.0, 1.5, 2.0}. Specifically, we reset the upper bound distance
ui,j as li,j+(ui,j–li,j)×γ, and get five patterns, each of which
corresponds to a value of γ. We report the average running
time for each group in Figures 19(e)-19(h). Clearly, as the
value of γ grows, the running time of each algorithm increases.
This is because, a larger value of γ means a larger distance
interval, which implies that more object sets are matched with
the patterns and thus additional time is needed.

Effect of signs. Recall that in pattern generation, for each
edge (vi, vj) we use a parameter η to control the percentages
of edges with different signs. Now for the patterns of each
dataset, we reset the signs of edges by varying η in {0.6,
0.7, 0.8, 0.9, 1.0}, and obtain five groups of patterns cor-
respondingly. Note that the keywords and distance intervals
remain unchanged. We report the average query time for each
group in Figures 19(i)-19(l). We observe that, as the value of
η increases, the running time of all the algorithms decreases
slightly. This is because, when η becomes larger, more edges
are with mutual inclusion. According to MPJOrder and
MSJOrder, we can skip the join for more edges with mutual
inclusion, and thus the query could be faster. However, edges
with exclusion can be processed faster than edges with mutual
inclusion, because fewer e-matches can be found. As a result,
the overall running time does not change much.

Scalability. For each dataset, we vary the value of χ as
shown in Figure 13, select a percentage of χ from its objects
randomly, and obtain four sub-datasets. Figures 19(m)-19(p)
report the scalability over these sub-datasets. As can be seen,
both MPJ and MSJ scale near linearly with the size of dataset.
Moreover, MPJ scales better than the baseline algorithms S-
VF3 and S-MDJ, and MSJ scales the best.

VI. RELATED WORK

Spatial keyword queries (SKQs). There are two kinds of
SKQs in the literature. The first type (e.g., [25], [19], [26],
[1]) takes as input the location where the query is issued, and a
set of keywords. A list of k objects is returned, each of which
is near to the query location, and is relevant to the keywords.
Efficient indexes (e.g., IR-tree [25]) were proposed to enable
fast query evaluation. In [19], [26], the top-k SKQ is studied.
The authors in [27] proposed an SKQ, which continuously
returns k objects when the query location moves. In [28], the
solution is extended to for road networks.

The second type of queries takes as arguments a set of
keywords and returns a group of objects [7], [3], [2], [8], [4]
that are close to each other, and which together match the set
of query keywords. Compared to the first type, this type of
queries is more related to our SPM query. A representative
query is the m-closest keyword (mCK) query [7], [3], which
finds a group of objects that collectively contain all the m
query keywords, and the maximum distance between any

two objects returned is minimized. However, as discussed in
Section V, our SPM query captures users’ requirements better
than the mCK query. Its variants include [4] that minimizes a
different distance cost function, and [8] that considers ratings
of objects. The authors of [2] consider the distance between
the query location and the returned group, in addition to the
requirements that the returned group of objects cover query
keywords and they are near to each other. A recent work [29]
queries the POIs similar to a given keyword-based clue.

The SPM query is also related to the multi-way spatial join.
Papadias et al. [12] express query constraints as graphs and
retrieve n-tuples of objects satisfying the query graphs, by
extending join with the R-tree index [30]. However, the objects
that instantiate the vertices are not determined by keyword
filters, but they are taken from the entire dataset(s). The join
between two inputs, one of which is indexed by an R-tree, as
well as multi-way joins that use this as a module, are studied
in [31]. The optimization of these join queries was studied
in [13]. However, none of these studies considers keywords
and the exclusion-ship among objects, and their applicability
and efficiency for solving SPM queries is questionable.

Graph pattern matching (GPM). Given a graph G and a
pattern graph P , the GPM query [14], [15] extracts a set R
of subgraphs of G, where for each r ∈ R, r matches with P .
Zou et al. [14] study the GPM problem on undirected graphs.
A recent work [15] proposes a fast GPM algorithm VF3
based on subgraph isomorphism. However, these solutions
are mainly designed for graph databases, rather than spatial
databases where objects are indexed by R-tree like structures.
Moreover, the graph patterns often do not have distance
requirement [15] or just have an upper bound distance [14]
on each edge, while in spatial patterns, each edge has not
only the minimum/maximum distance requirements, but also
the inclusion/exclusion-ship. Thus, all these methods cannot be
used to answer the SPM query directly. We adapt two GPM
solutions [14], [15] to answer SPM queries as baselines, but
they are not efficient as shown by our experiments.

VII. CONCLUSIONS

In this paper, we examine the spatial pattern matching (or
SPM) problem. We first show that this problem is computa-
tionally intractable. Then we propose two efficient algorithms,
namely MPJ and MSJ, for the SPM query. Our experimental
results on real datasets show that our SPM queries are more
effective than the state-of-the-art SKQs. Moreover, the MSJ
algorithm is up to an order of magnitude faster than the
baseline solutions which are adapted from GPM solutions.

In the future, we plan to increase to expansiveness power
of the SPM query. For example, we will make the pattern
to support more logical operations (e.g., “AND” and “OR”),
supporting for instance the case where we want to find a house
that has nearby a hospital or a doctor. Another change is to
allow users to express directions, saying that a school has to
be on the north of a house. It is also interesting to find sets
of objects that are partially matched with the query pattern, if
there is no match for the pattern in the database.

ACKNOWLEDGMENTS
Reynold Cheng and Yixiang Fang were supported by the

Research Grants Council of Hong Kong (RGC Projects HKU
17229116 and 17205115) and HKU (Projects 104004572,
102009508, 104004129). Gao Cong was supported by MOE
Tier-2 grant MOE2016-T2-1-137 and MOE Tier-1 grant
RG31/17. Nikos Mamoulis has received funding from the
European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 657347.

REFERENCES

[1] L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial keyword query
processing: an experimental evaluation,” PVLDB, pp. 217–228, 2013.

[2] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi, “Collective spatial
keyword querying,” in SIGMOD. ACM, 2011, pp. 373–384.

[3] T. Guo, X. Cao, and G. Cong, “Efficient algorithms for answering the
m-closest keywords query,” in SIGMOD. ACM, 2015, pp. 405–418.

[4] D. Choi, J. Pei, and X. Lin, “Finding the minimum spatial keyword
cover,” in ICDE. IEEE, 2016, pp. 685–696.

[5] Y. Fang et al, “Scalable algorithms for nearest-neighbor joins on big
trajectory data,” TKDE, vol. 28, no. 3, pp. 785–800, 2016.

[6] Y. Fang et al, “Effective community search over large spatial graphs,”
PVLDB, vol. 10, no. 6, pp. 709–720, 2017.

[7] D. Zhang et al., “Keyword search in spatial databases: towards searching
by document,” in ICDE. IEEE, 2009, pp. 688–699.

[8] K. Deng, X. Li, J. Lu, and X. Zhou, “Best keyword cover search.”
TKDE, vol. 27, no. 1, pp. 61–73, 2015.

[9] “Settlement patterns,” http://geography.parkfieldprimary.com/the-united-
kingdom/settlement-patterns, 2017.

[10] J. Schnaiberg, J. Riera, M. G. Turner, and P. R. Voss, “Explaining human
settlement patterns in a recreational lake district: Vilas county, wisconsin,
usa,” Environmental Management, vol. 30, no. 1, pp. 24–34, 2002.

[11] S. Ministry of Education, https://www.moe.gov.sg/admissions/primary-
one-registration/allocation, 2017.

[12] D. Papadias, N. Mamoulis, and B. Delis, “Algorithms for querying by
spatial structure,” in VLDB, 1998, pp. 546–557.

[13] N. Mamoulis and D. Papadias, “Multiway spatial joins,” TODS, vol. 26,
no. 4, pp. 424–475, 2001.

[14] L. Zou, L. Chen, and M. T. Özsu, “Distance-join: pattern match query
in a large graph database,” PVLDB, vol. 2, no. 1, pp. 886–897, 2009.

[15] V. Carletti et al., “Challenging the time complexity of exact subgraph
isomorphism for huge and dense graphs with vf3,” TPAMI, 2017.

[16] Y. Wu, J. M. Patel, and H. Jagadish, “Structural join order selection for
xml query optimization,” in ICDE. IEEE, 2003, pp. 443–454.

[17] Y. Fang et al, “SpaceKey: exploring patterns in spatial databases,” in
ICDE. IEEE, 2018.

[18] Y. Fang, R. Cheng, G. Cong, N. Mamoulis, Y. Li, “On spatial pattern
matching,” http://i.cs.hku.hk/∼yxfang/spm2017.pdf.

[19] D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen, “Joint top-k spatial
keyword query processing,” TKDE, 2012.

[20] D. Papadias, N. Mamoulis, and Y. Theodoridis, “Processing and opti-
mization of multiway spatial joins using r-trees,” in PODS, 1999.

[21] J. Jin, N. An, and A. Sivasubramaniam, “Analyzing range queries on
spatial data,” in ICDE. IEEE, 2000, pp. 525–534.

[22] https://en.wikipedia.org/wiki/Geometric distribution.
[23] https://en.wikipedia.org/wiki/Floyd-Warshall algorithm.
[24] V. Batagelj and M. Zaversnik, “An o(m) algorithm for cores decompo-

sition of networks,” arXiv preprint cs/0310049, 2003.
[25] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of the top-k most

relevant spatial web objects,” VLDB, vol. 2, no. 1, pp. 337–348, 2009.
[26] C. Zhang, Y. Zhang, W. Zhang, and X. Lin, “Inverted linear quadtree:

Efficient top-k spatial keyword search,” TKDE, 2016.
[27] W. Huang, G. Li, K.-L. Tan, and J. Feng, “Efficient safe-region con-

struction for moving top-k spatial keyword queries,” in CIKM, 2012.
[28] C. Zhang, Y. Zhang, W. Zhang, X. Lin, M. A. Cheema, and X. Wang,

“Diversified spatial keyword search on road networks.” in EDBT, 2014.
[29] J. Liu, K. Deng, H. Sun, Y. Ge, X. Zhou, and C. S. Jensen, “Clue-based

spatio-textual query,” PVLDB, vol. 10, no. 5, pp. 529–540, 2017.
[30] T. Brinkhoff, H.-P. Kriegel, and B. Seeger, “Efficient processing of

spatial joins using r-trees,” SIGMOD, pp. 237–246, 1993.
[31] N. Mamoulis and D. Papadias, “Integration of spatial join algorithms for

processing multiple inputs,” SIGMOD, vol. 28, no. 2, pp. 1–12, 1999.

http://i.cs.hku.hk/~yxfang/spm2017.pdf
https://en.wikipedia.org/wiki/Geometric_distribution
https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm

	Introduction
	Problem Definition
	The SPM Problem
	Baseline Solutions: S-MDJ and S-VF3

	The MPJ Algorithm
	The PJ Algorithm
	The Join Order for MPJ
	The MPJ Algorithm

	The MSJ algorithm
	The Bounded Pattern
	The Join Order for MSJ
	Two Pruning Criteria
	The MSJ Algorithm

	Experiments
	Setup
	Experimental Results
	A Case Study
	Effectiveness of Estimation Method in MPJ
	Comparing Join Orders
	Efficiency Results

	Related work
	Conclusions
	References

