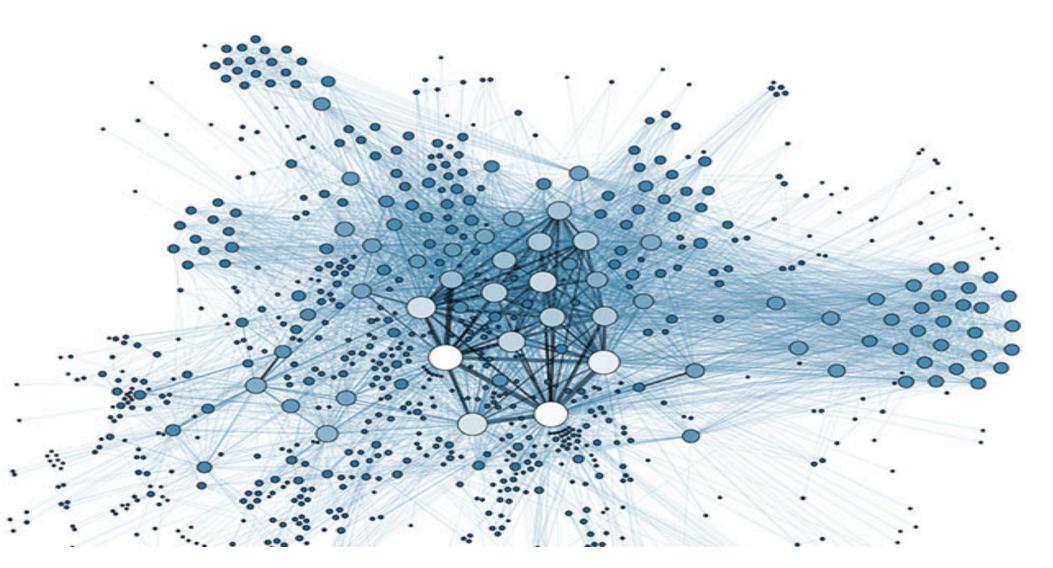
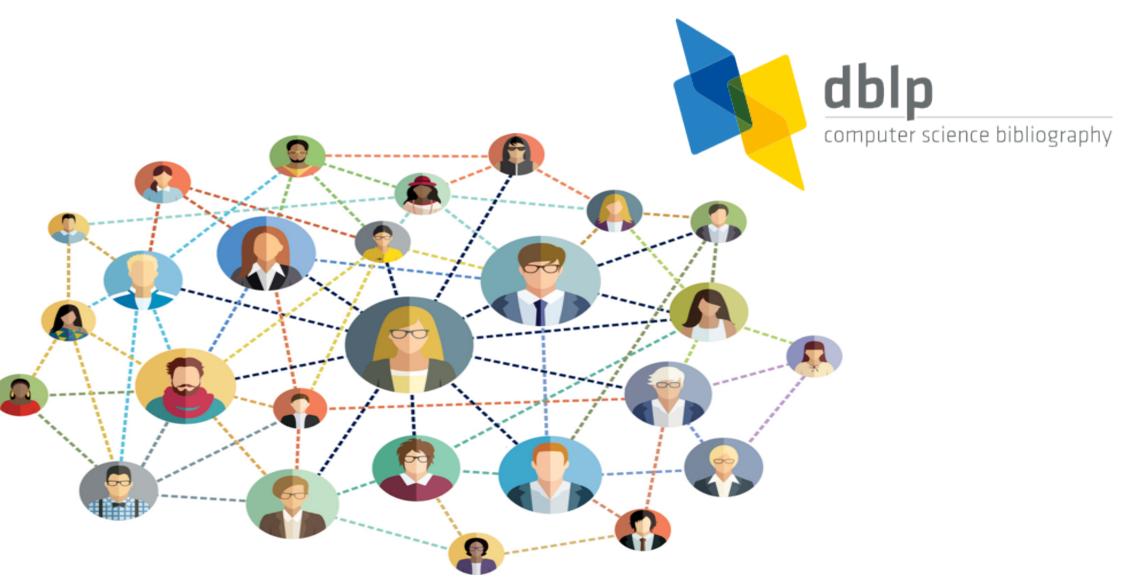
Meta Paths and Meta Structures: Analysing Large Heterogeneous Information Networks

Reynold Cheng Department of Computer Science University of Hong Kong http://www.cs.hku.hk/~ckcheng/ ckcheng@cs.hku.hk

Knowledge Graphs



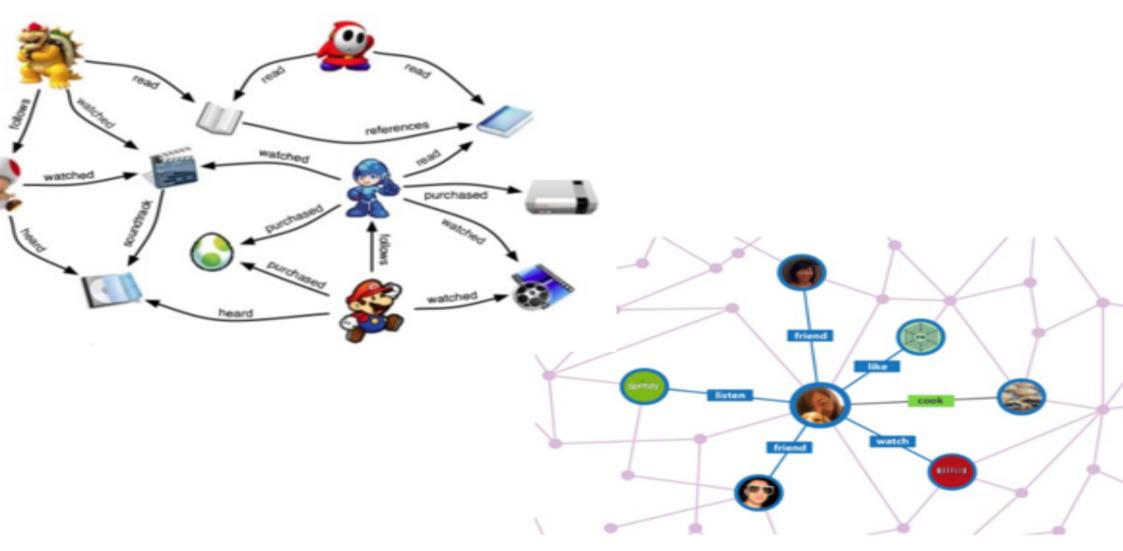
Social Networking Websites


https://makeawebsitehub.com/social-media-sites/

Biological Network


http://serious-science.org/controlling-noisy-dynamics-in-biological-networks-to-fight-cancer-5376

Research Collaboration Network


https://scholarlykitchen.sspnet.org/2017/04/07/updated-figures-scale-nature-researchers-use-scholarly-collaboration-networks/

Product Recommendation Network

http://www.sciencedirect.com/science/article/pii/S0957417413006921 Byunghak Leem. Heuiju Chun. An impact of online recommendation network on demand

Heterogeneous Information Network (HIN)

Yangqiu Song. Recent Development of Heterogeneous Information Networks: From Meta-paths to Meta-graphs

HINs are Ubiquitous !

O Healthcare

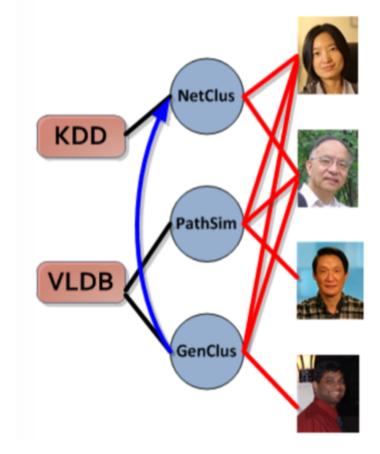
- Doctor, Patient, Disease

Source Code Repository
 Project, Developer, Repository

E-Commerce
 Seller, Buyer, Product

News Author, Organization

Jiawei Han. A Meta Path-Based Approach for Similarity Search and Mining of Heterogeneous Information Networks.



amazon

Example HINs

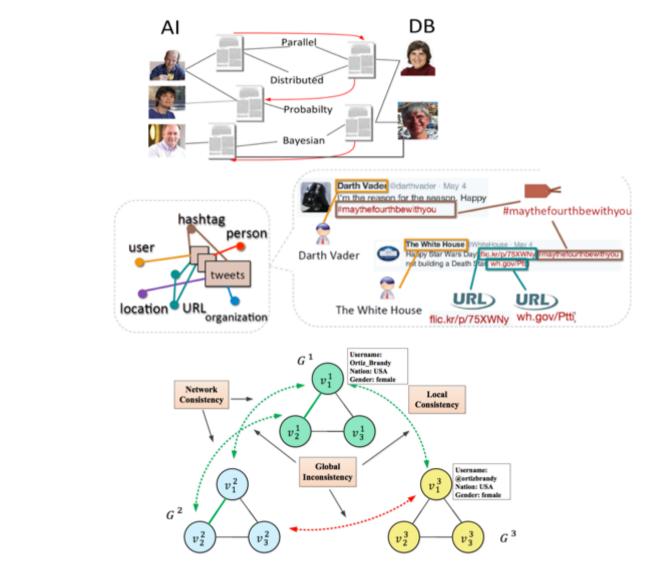
- DBLP Bibliographic
 Network
- O Node (Type):
 - -KDD (Venue)
 - Jiawei Han (Author)
- Link (Type):
 - Write (Author \rightarrow Paper)
 - Publish (Paper → Venue)

Jiawei Han. A Meta Path-Based Approach for Similarity Search and Mining of Heterogeneous Information Networks.

Example HINs

- The IMDB Movie
 Network
- O Node (Type):
 - -Forrest Gump (Movie)
 - Tom Cruise (Actor)
- Link (Type):
 - Make (Producer \rightarrow Movie)
 - -Act (Author \rightarrow Movie)

Example HINs


\odot The Facebook Network

- Node (Type):
 - Jimmy (User)
 - Coca Cola (Product)
- Link (Type):
 - Like (User → Product
 - Follow (User → User)

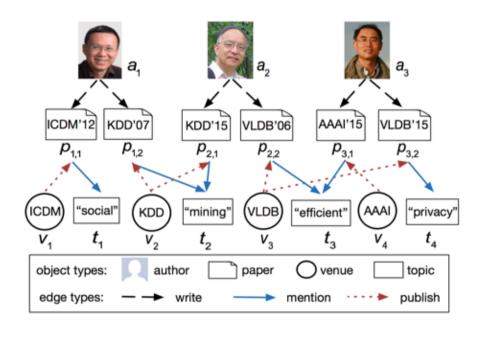
Jiawei Han. A Meta Path-Based Approach for Similarity Search and Mining of Heterogeneous Information Networks.

HIN Applications

Data Integration

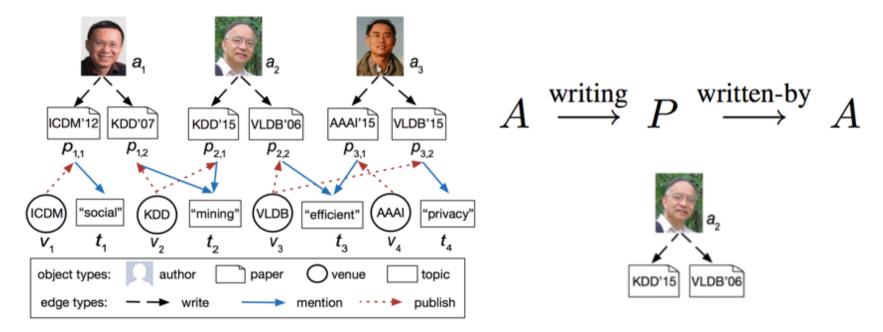
Link Prediction

O Entity Profiling


Yangqiu Song. Recent Development of Heterogeneous Information Networks: From Meta-paths to Meta-graphs Yutao Zhang, Jie Tang, Zhilin Yang, Jian Pei, and Philip S. Yu. COSNET: Connecting Heterogeneous Social Networks with Local and Global Consistency, KDD 2015.

Relevance Search

ind Similar/Relevant Objects in Networks


$A \stackrel{\text{writing}}{\longrightarrow} P$	$\stackrel{\text{written-by}}{\longrightarrow} A$
--	---

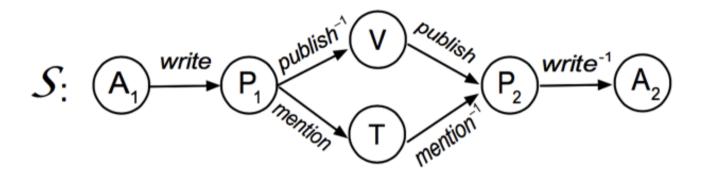
BLP¹

- Who are most similar to *Jiawei Han*?
- **Whose** recent publication is relevant with *Jiawei Han's* research ?

OWhere do relations (meta-path) come from?

- Provided by experts [Sun VLDB'11]
 - Not easy for a complex schema!

Changping Meng, Reynold Cheng, Silviu Maniu, Pierre Senellart, and Wangda Zhang. "Discovering Meta-Paths in Large Heterogeneous Information Networks", in WWW 2015.


 Query Recommendation: to suggest alternate relevant queries to a search engine user

 $_{\odot}$ How will HIN benefit query recommendation ?

Google				hku的相關搜尋 hku non jupas hku part time degree hku admission score 2014	
as you ty			Ŷ	hku master hku space	hku library hku lib
as you type jbt validation as you type excel displays the entry in the bar as you type excel displays the entry in the as you type search as you type				Goooooooogle > 1 2 3 4 5 6 7 8 9 10 T-E	
Google 搜尋 好哥	好手氣			· · · ·	

Zhipeng Huang, Bogdan Cautis, Reynold Cheng, Yudian Zheng. KB-Enabled Query Recommendation for Long-Tail Queries. CIKM 2016.

How can we express using more complex structure?

 More Expressive (i.e., contain more information) than a meta path.

Zhipeng Huang, Yudian Zheng, Reynold Cheng, Yizhou Sun, Nikos Mamoulis, Xiang Li. Meta Structure: Computing Relevance in Large Heterogeneous Information Networks. KDD 2016.


Outline

• Introduction

- Motivation
- Heterogeneous Information Network (HIN)
- Applications
- Meta-Path
 - Relevance Search
 - Meta-Path Discovery
 - Query Recommendation
- Meta-Structure
 - Definition
 - Relevance Search
- Conclusions & Future Work

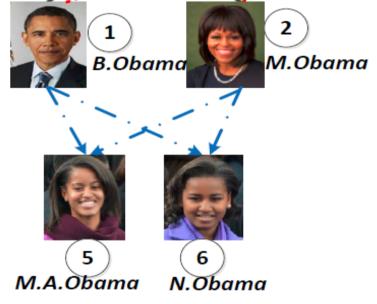
Fundamental question: Relevance Computation

s B. Obama *relevant to* J. W. Bush?

Relevance Search

\odot How to measure the similarity?

 Define a Effective Similarity Function like Cosine, Euclidean distance, Jaccard coefficient.


o Structure similarity or Semantic similarity?

- Structure Similarity: Based on structural similarity of sub-network structures. (like SimRank and PPR)
- Semantic Similarity: influenced by similar network structures. This matters more for HIN! Semantic->edge relations

Meta Path [Sun VLDB'11]

Meta path: a sequence of node classes connected by edge types

 $\begin{array}{l} m1: \mathsf{USPresident} \xrightarrow[]{\mathsf{hasChild}} \mathsf{Person} \xrightarrow[]{\mathsf{hasChild}^{-1}} \mathsf{USFirstLady}, \\ m2: \mathsf{USPresident} \xrightarrow[]{\mathsf{memberOf}} \mathsf{USPoliticalParty} \xrightarrow[]{\mathsf{memberOf}^{-1}} \mathsf{USFirstLady}, \\ m3: \mathsf{USPresident} \xrightarrow[]{\mathsf{citizenOf}} \mathsf{Country} \xrightarrow[]{\mathsf{citizenOf}^{-1}} \mathsf{USFirstLady}. \end{array}$

Meta paths can be used to define relevance between 2 nodes.

Meta Path Relevance 1: Path Count (PC)

- Path Count(PC) [Sun VLDB'11]
 - Number of the paths following a given meta path
 - PC(B.Obama, M.Obama) = 1+1=2, because there are two path instances.

$$m1$$
:USPresident $\xrightarrow{\text{hasChild}}$ Person $\xrightarrow{\text{hasChild}^{-1}}$ USFirstLady,

– PC biases popular objects with a large no. of links. M.A

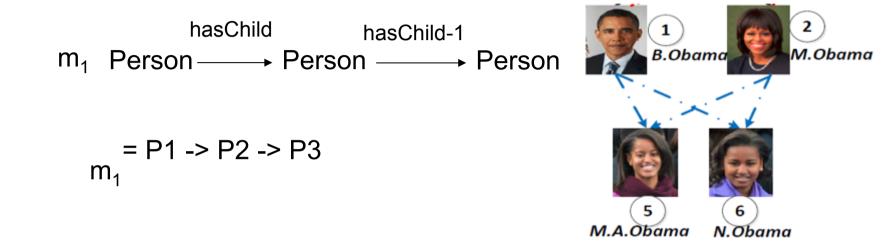
Meta Path Relevance 2: Path Constrained Random Wall

○ Model

Random walk on given paths.

\circ **Definition**

- Performing random walks on given meta-paths between source and target node.
- PCRW: Transition probability of the random walk following a given meta-path.

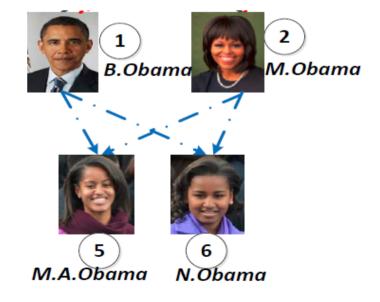

 $PCRW(s,t|\mathbf{\Pi}) = P(\mathbf{s} \rightarrow t|\mathbf{\Pi})$

Between [0, 1].

[Cohen ECML'11]W. Cohen, N. Lao "Relational Retrieval Using a Combination of Path-Constrained Random Walks"

PCRW

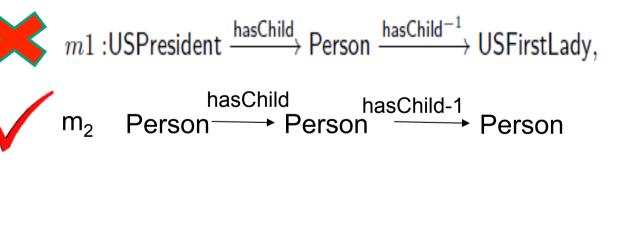
\circ Example


PCRW(B. Obama, M. Obama) = 0.5

- 1. Pr(B.Obama | P1)=1
- 2. Pr(M.A. Obama | P2) = Pr(B.Obama | P1) / 2 = 0.5 Pr(N.Obama | P2) = Pr(B.Obama | P1) / 2= 0.5
- 3. Pr(M.Obama | P3) = Pr(M.A. Obama | P2) /2 + Pr(N.Obama | P2) /2 = 0.5 Pr(B.Obama | P3) = Pr(M.A. Obama | P2) 2 + Pr(N.Obama | P2) /2 = 0.5

Meta Path Relevance 3: BPCRW

- Biased Path Constrained Random Walk(BPCRW) [Meng WWW'15]
 - Generalization of PC and PCRW.
 - Biased factor α in [0,1].
 - When $\alpha = 0$, BPCRW becomes PC;
 - When α = 1, BPCRW becomes PCRW.


$$m1: \text{USPresident} \xrightarrow{\text{hasChild}} \text{Person} \xrightarrow{\text{hasChild}^{-1}} \text{USFirstLady}$$

Meta Path Relevance 4: PathSim (PS)

○ PathSim(PS) [Sun VLDB'11]

- -For symmetric meta paths only
- -PS is a normalized version of PC, with a value in [0, 1].

• PS(B.Obama, M.Obama | m₂)=1

Recent Developments

○ HeteSim (APWeb'14)

Enhanced version of SimRank

○ KnowSim (APWeb'14)

Based on given meta-path and the reverse meta-path

о AvgSim (ICDM'16)

Measure the similarity of documents in HIN

○ RelSim (SDM'16)

Measure the similarity of relations in HIN

Questions

• Where do meta paths come from?

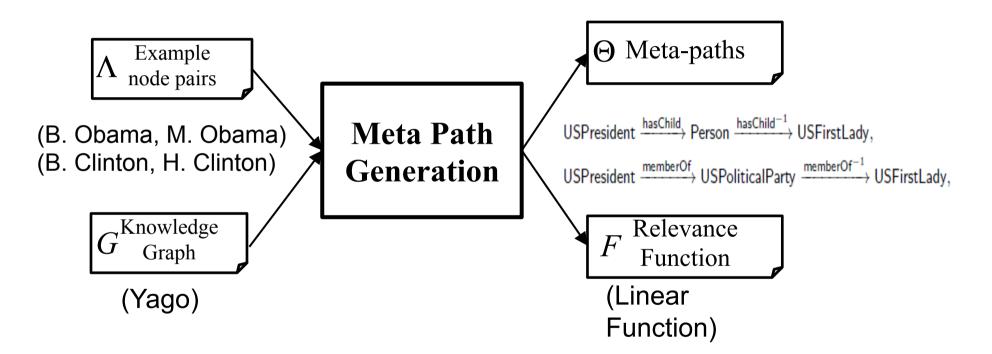
- Provided by experts [Sun VLDB'11]
 - Not easy for a complex schema!
- Enumeration within a given length of meta paths
 [Cohen ECML'11]
 - No clue about the length!
- -How do I know the weights ?

Outline

- Introduction
 - Motivation
 - Heterogeneous Information Network (HIN)
 - Applications
- Meta-Path
 - Definition
 - Relevance Search
 - Meta-Path Discovery
 - Query Recommendation
- Meta-Structure
 - Definition
 - Relevance Search
- **Conclusions & Future Work**

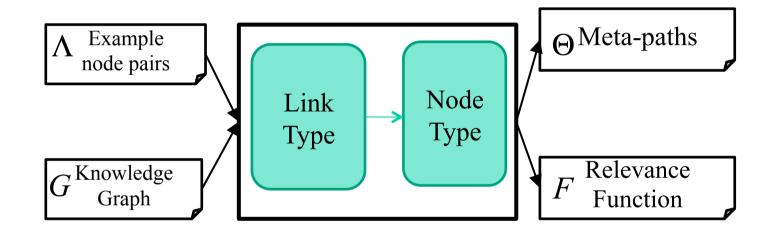
Our Contributions (WWW'15)

Obsign a solution that:

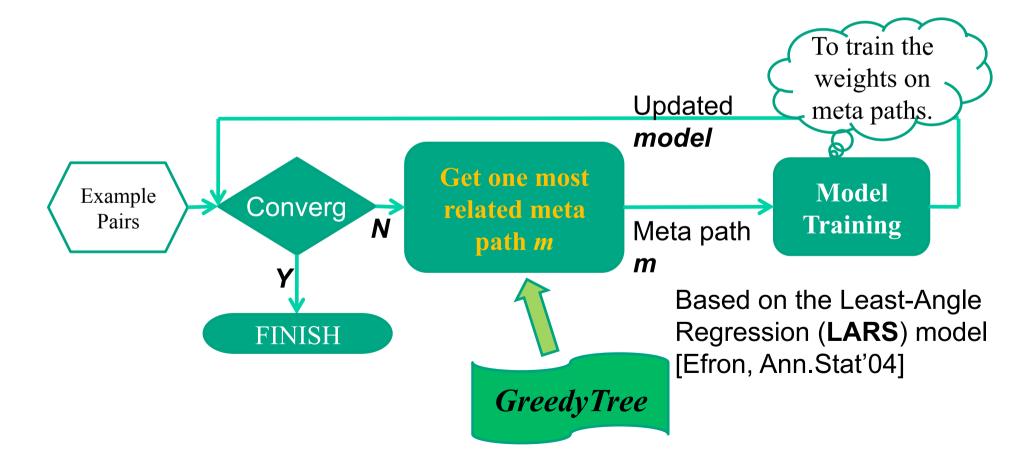

- -(1) Discovers the best meta paths
- (2) Learns the weights, without maximum weight specified.

[Meng WWW'15] Changping Meng, Reynold Cheng, Silviu Maniu, Pierre Senellart, and Wangda Zhang. "Discovering Meta-Paths in Large Heterogeneous Information Networks", in WWW 2015.

Meta-Path Framework

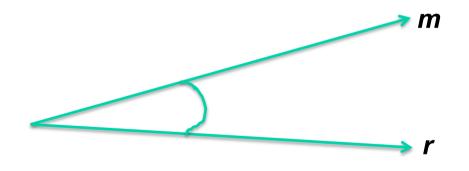

• Framework

Challenge: Each node and edge can have many class labels. The number of candidate meta paths grows exponentially with their path lengths.

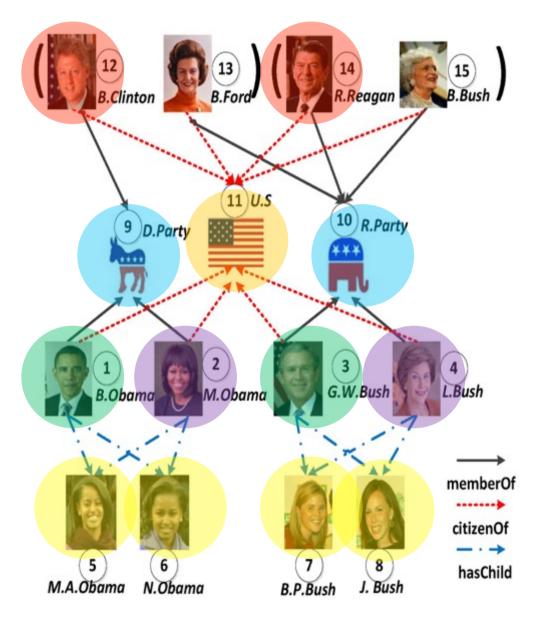

Generating Meta-Paths

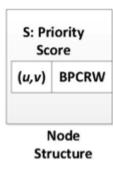
o In Two Phases

Phase 1: Link-Only Path Generation

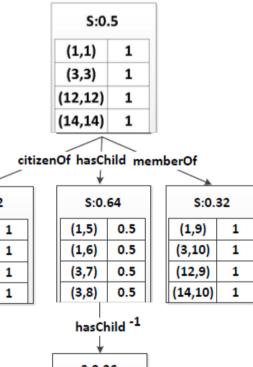

- o Forward Stage-wise Path Generation (FSPG)
 - iteratively generate the most related meta-paths and update the model

Meta path Generation


○ GreedyTree


- A tree that greedily expands the node which has the largest priority score
- Priority Score : related to the correlation between *m* and *r*
 - *m* is the vector expression of a meta path, *r* is the residual vector which evaluates the gap between the truth and current model

Phase 1: Link-Only Path Generation

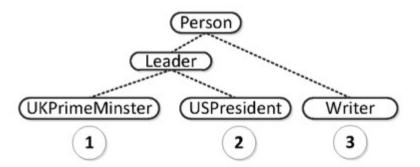

S:0.32

(1,11)

(3,11)

(12,11)

(14,11)

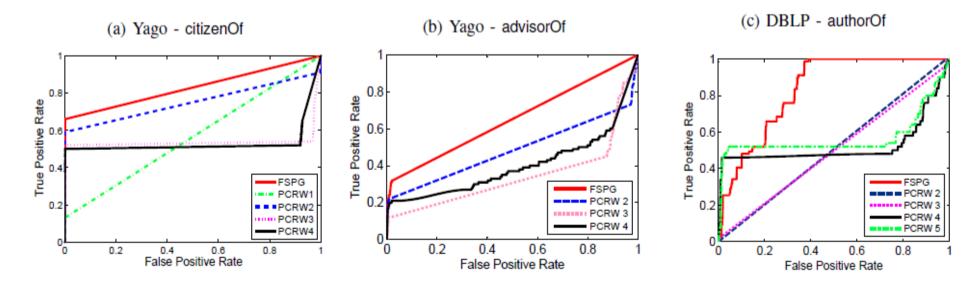


GreedyTree

S:0.36				
(1,2)	1			
(3,4)	1			

Phase 2: Node Class Generation

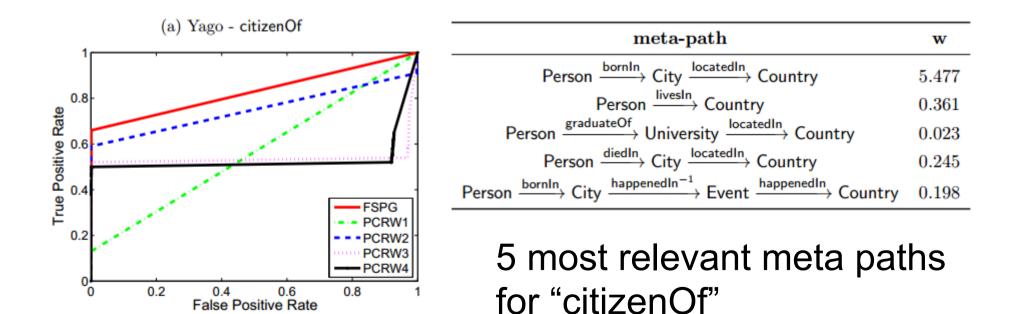
- Why node classes?
 - A link only meta path may introduce some unrelated result pairs
 - It is less specific
 - ? $\xrightarrow{\text{liveln}}$? Scientist $\xrightarrow{\text{liveln}}$ CapitalCity
 - Solution : Lowest Common Ancestor (LCA)
 - Record the LCA in the node of GreedyTree


Experiments

Datasets

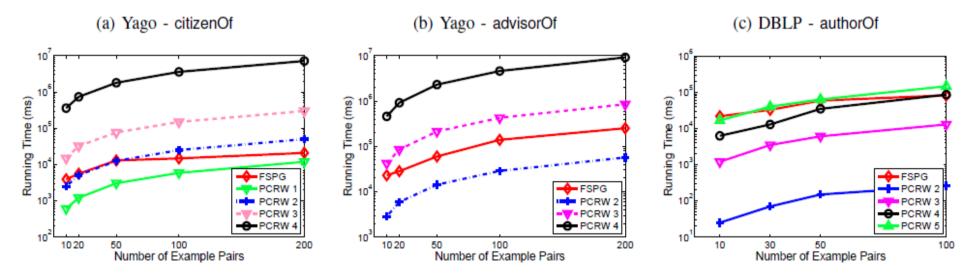
- -DBLP (4 areas: DB, DM, AI, IR)
 - 14K papers, 14K authors, 9K topics, 20 venues.
- -Yago
 - A KG derived from Wikipedia, WordNet and GeoNames.
 - CORE Facts: 2.1 million nodes, 8 million edges, 125 edge types, 0.36 million node types
- \odot Link-prediction evaluation
 - Select n pairs of certain relationships as example pairs
 - Randomly select another m pairs to predict the links

Experiment 1: Effectiveness

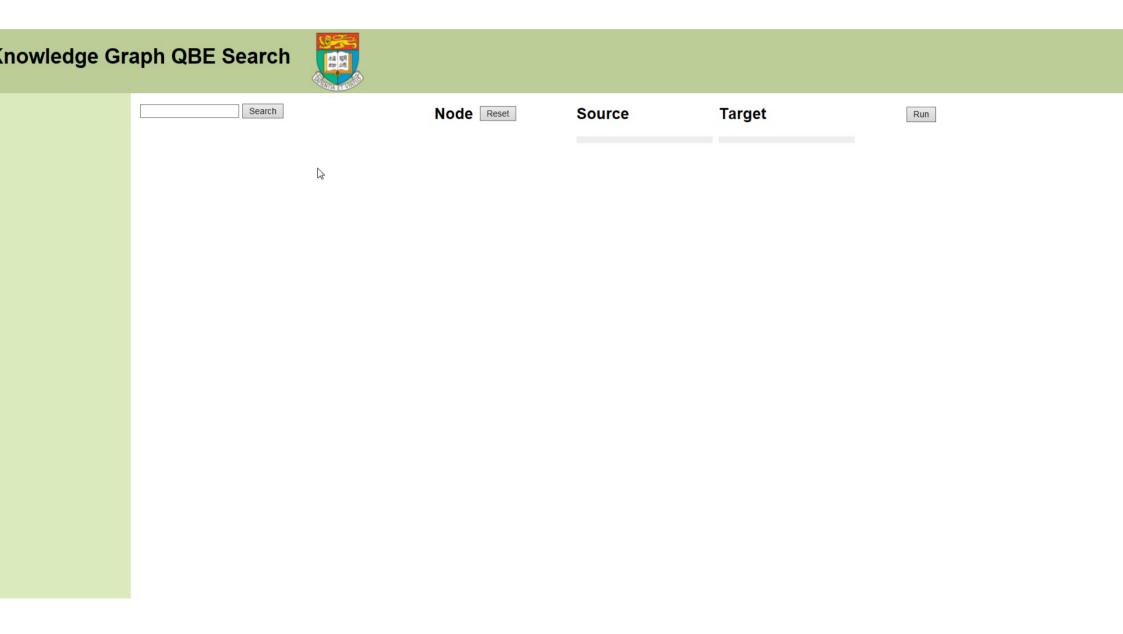

- Baseline: enumerate all meta paths within a given max length L = 1, 2, 3, 4
 - -L is small \rightarrow low recall.
 - -L is large \rightarrow low precision.

ROC for link prediction

Experiment 2


- Case study: Yago citizenOf
 - Better than direct link (PCRW 1)
 - Better than best PCRW 2
 - -Better than PCRW 3,4

Experiment 3: Efficiency


• Findings:

- In Yago, 2 orders of magnitude better than paths with lengths more than 2.
- In DBLP, the running time is comparable to PCRW 5, but the accuracy is much better.

Running time of FSPG

Demo

Outline

- Introduction
 - Motivation
 - Heterogeneous Information Network (HIN)
 - Applications
- Meta-Path
 - Definition
 - Relevance Search
 - Meta-Path Discovery
 - Query Recommendation
- Meta-Structure
 - Definition
 - Relevance Search
- Conclusions & Future Work

Query Recommendation

Suggest relevant queries to a search engine user

-1) As you type;

-2) Related queries

hku non jupas	polyu
hku part time degree	cityu
hku admission score 2014	香港大學 傑出校友
hku master	hku library
hku space	hku lib

Zhipeng Huang, Bogdan Cautis, Reynold Cheng, Yudian Zheng. KB-Enabled Query Recommendation for Long-Tail Queries. CIKM 2016.

Query Log

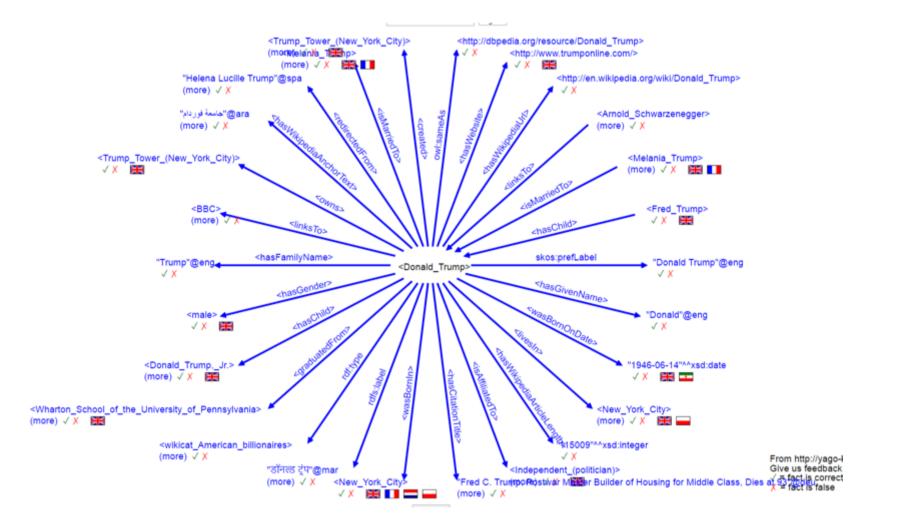
- Existing methods rely on query logs to analyze the flow among queries.
- A set of user log <q, u, t, C>
 - -q: the query
 - u: user id
 - -t: time stamp
 - -C: the clicked URLs

Boldi, Paolo, et al. "The query-flow graph: model and applications." Proceedings of the 17th ACM conference on Information and knowledge management. ACM, 2008.

Bonchi, Francesco, et al. "Efficient query recommendations in the long tail via center-piece subgraphs." Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval. ACM, 2012.

Long Tail Distribution

- Long-tail queries: queries that are not commonly requested by users
 - "akira kurosawa influence george lucas"



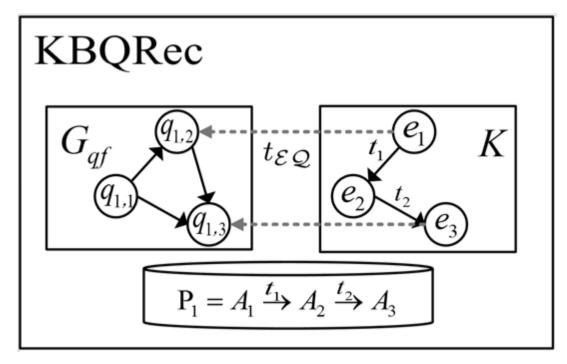
Motivation

• **Ubiquity**:

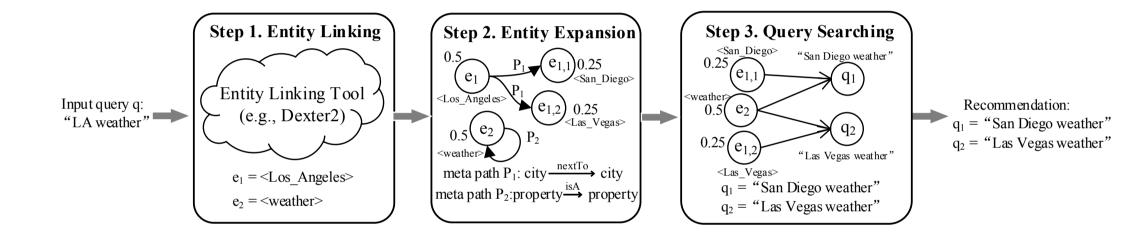
- -84% of 10M queries appear no more than 3 times.
- Necessity:
 - Existing works often only rely on <u>query log</u> alone

Knowledge Graph

Hoffart, Johannes, et al. "Yago2: a spatially and temporally enhanced Knowledge Graph from wikipedia." (2012).

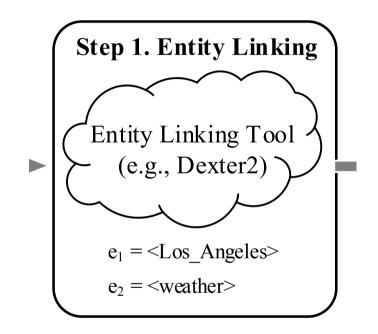

Relationship in KG

- Meta path representation:
 - -P: city nextTo city
- Q: "weather Los Angeles"
 - -Rec:
 - "weather <u>Las Vegas</u>"
 - "weather <u>San Diego</u>"


[Sun, Han VLDB'11] Y. Sun, J. Han, el "PathSim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information Networks

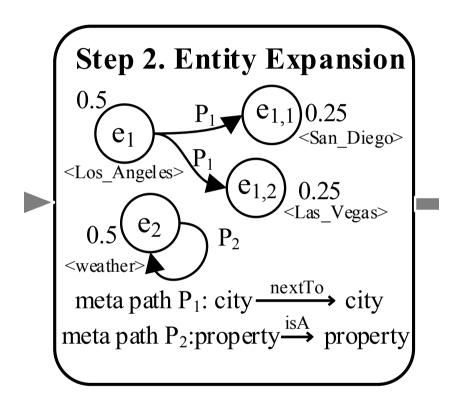
System Overview

- \odot G = (G_{qf}, K, t_{eq}, P)
 - $-G_{qf}$ is a query-flow graph
 - K is a Knowledge Graph
 - $-t_{EQ}$ is a set of entity-query links
 - P is a set of meta path to be extracted from query log

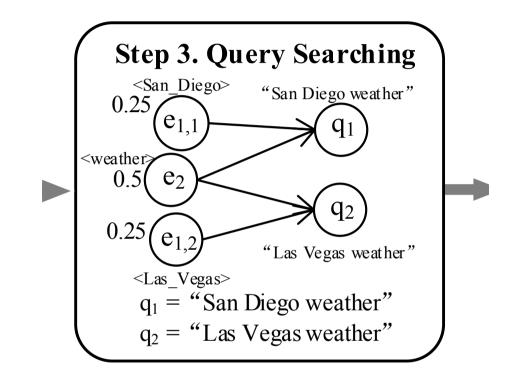

Online Process

Step 1: Entity Linking

- o Given
 - -q = "weather Los Angeles"

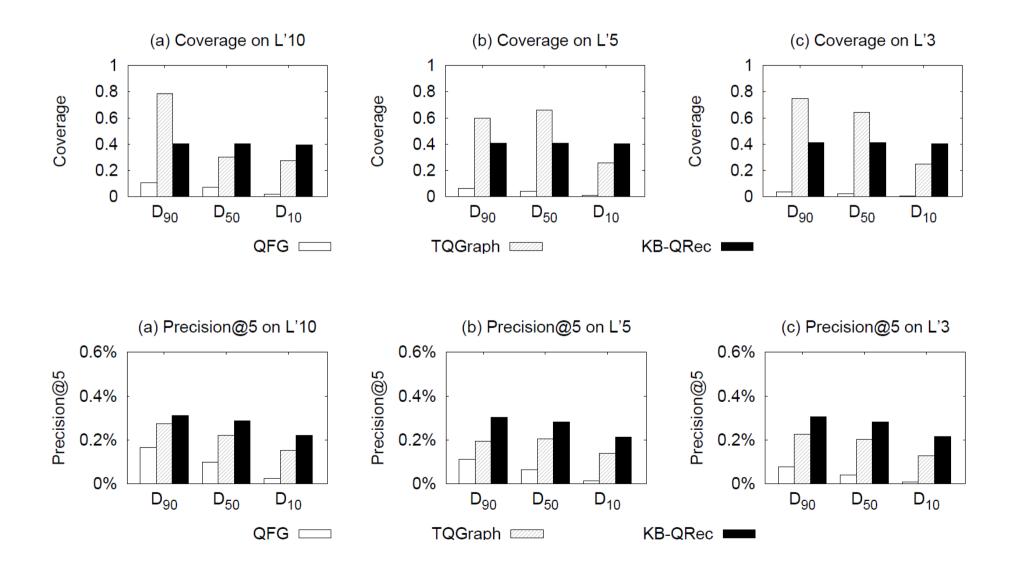

○ Return: -e₁ = Los_Angeles

Ceccarelli, Diego, et al. "Dexter: an open source framework for entity linking." Proceedings of the sixth international workshop on Exploiting semantic annotations in information retrieval. ACM, 2013.


Step 2. Entity Expansion

- o Given
 - $-e_1 = Los_Angeles$
- Using P:
 - -city NextTo city
- o **Return**
 - $-e_2 = Las_Vegas$ $-e_3 = San_Diego$

Step 3. Query Searching


- Given:
 - $-e_2 = Las_Vegas$ $-e_3 = San_Diego$
- Return:
 - $-q_1$ = "weather las vegas" $-q_2$ = "weather san diego"

Experiments

- Dataset: AOL. 20M query instances from 9M distinct queries.
- Use 10%, 50%, 90% for building the query log, and 10% for testing.
- Testing sets: We use 3, 5, 10 as the threshold for long-tail queries. We name them L'3, L'5 and L'10.
- Measures:
 - Coverage
 - Precision@5

Experimental Results

Efficiency

• Time for offline:

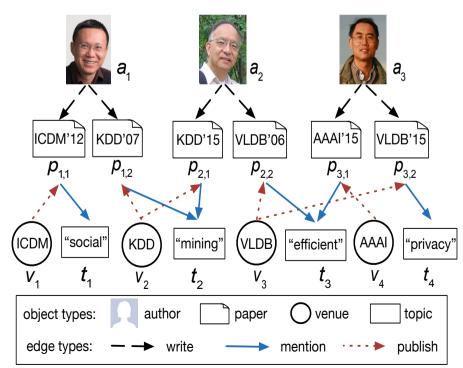
Table 4: Efficiency for building KB-QREC's index.

	D_{10}	D_{50}	D_{90}
Building Time	$14 \min$	$56 \min$	132 min

• Time for entity linking:

– 60ms for Dexter2; can be reduced to 0.4ms if we use FEL method.

Table 5: Efficiency (in ms)

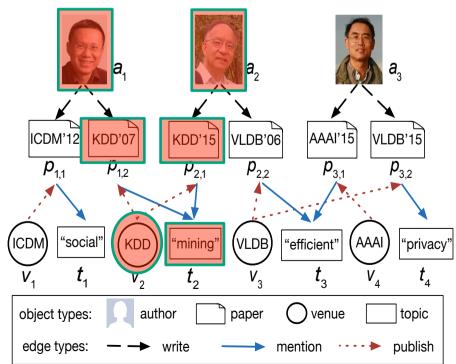

	entity	PPR	PPR	KB-QRec	KB-QRec
	expansion	(no cache)	(cache)	(no cache)	(cache)
D_{90}	$34 \mathrm{ms}$	$91 \mathrm{ms}$	$9 \mathrm{ms}$	143 ms	$60 \mathrm{ms}$
D_{50}	$34 \mathrm{ms}$	55 ms	5 ms	$100 \mathrm{ms}$	$47 \mathrm{ms}$
D_{10}	33 ms	13 ms	$1 \mathrm{ms}$	59 ms	$37 \mathrm{ms}$

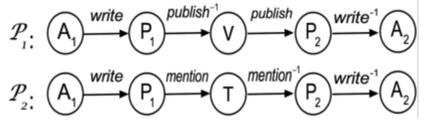
Outline

- Introduction
 - Motivation
 - Heterogeneous Information Network (HIN)
 - Applications
- Meta-Path
 - Relevance Search
 - Meta-Path Discovery
 - Query Recommendation
- Meta-Structure
 - Definition
 - Relevance Search
- Conclusions & Future Work

Limitations of Meta Paths

- Fail to discover common nodes in different meta paths!
 - E.g., a researcher wants to search for some authors who have published papers in the same venue *and* in the same topic with his

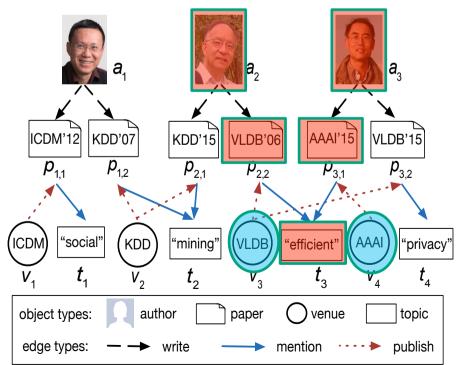


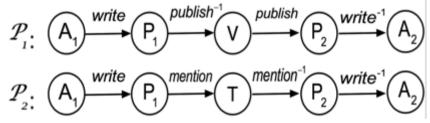

$\mathcal{P}_{1}: (A_{1}) \xrightarrow{\text{write}} (P_{1}) \xrightarrow{\text{publish}^{-1}} (V) \xrightarrow{\text{publish}} (P_{2}) \xrightarrow{\text{write}^{-1}} (V)$	A_2
$\mathcal{P}_{2}: (A_{1}) \xrightarrow{\text{write}} (P_{1}) \xrightarrow{\text{mention}} (T) \xrightarrow{\text{mention}^{-1}} (P_{2}) \xrightarrow{\text{write}^{-1}} (P_{2}) \xrightarrow{\text{write}^$	A_2

Pair	Meta Path Measures				
	PathCount	PathSim	PCRW		
a_2, a_1	2	0.5	0.25		
a_2, a_3	2	0.5	0.25		

Limitations of Meta Paths

- Fail to discover common nodes in different meta paths!
 - E.g., a researcher wants to search for some authors who have published papers in the same venue *and* in the same topic with his

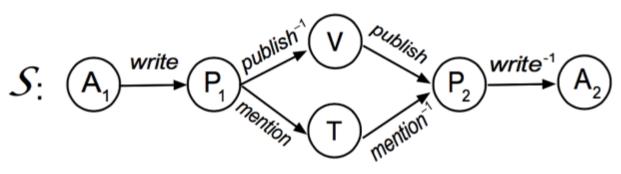




Pair	Meta Path Measures				
	PathCount	PathSim	PCRW		
a_2, a_1	2	0.5	0.25		
a_2, a_3	2	0.5	0.25		

Limitations of Meta Paths

- Fail to discover common nodes in different meta paths!
 - E.g., a researcher wants to search for some authors who have published papers in the same venue and in the same topic with his



Pair	Meta Path Measures				
	PathCount	PathSim	PCRW		
a_2, a_1	2	0.5	0.25		
a_2, a_3	2	0.5	0.25		

Meta Structure

 A meta structure is a directed acyclic graph (DAG) with a single source and sink (target) node

More Expressive (i.e., contain more information) than a meta path.

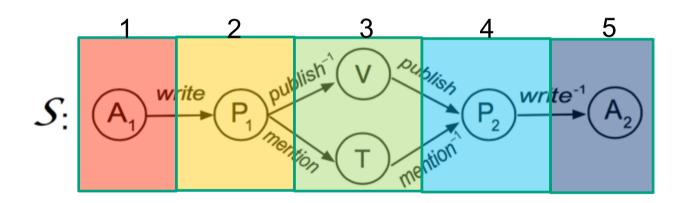
[Huang KDD'16] ZP. Huang "Meta Structure: Computing Relevance on Large Heterogeneous Information Networks" KDD 2016

Outline

- Introduction
 - Motivation
 - Heterogeneous Information Network (HIN)
 - Applications
- Meta-Path
 - Definition
 - Relevance Search
 - Meta-Path Discovery
 - Query Recommendation
- Meta-Structure
 - Definition
 - Relevance Search
- Conclusions & Future Work

Relevance Measure 1: StructCount

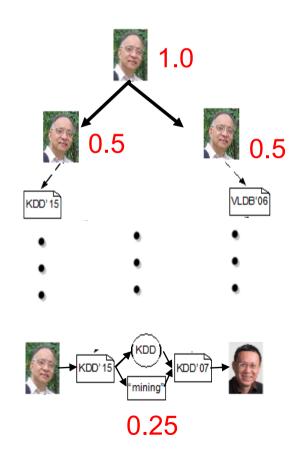
O StructCount: extension of PathCount

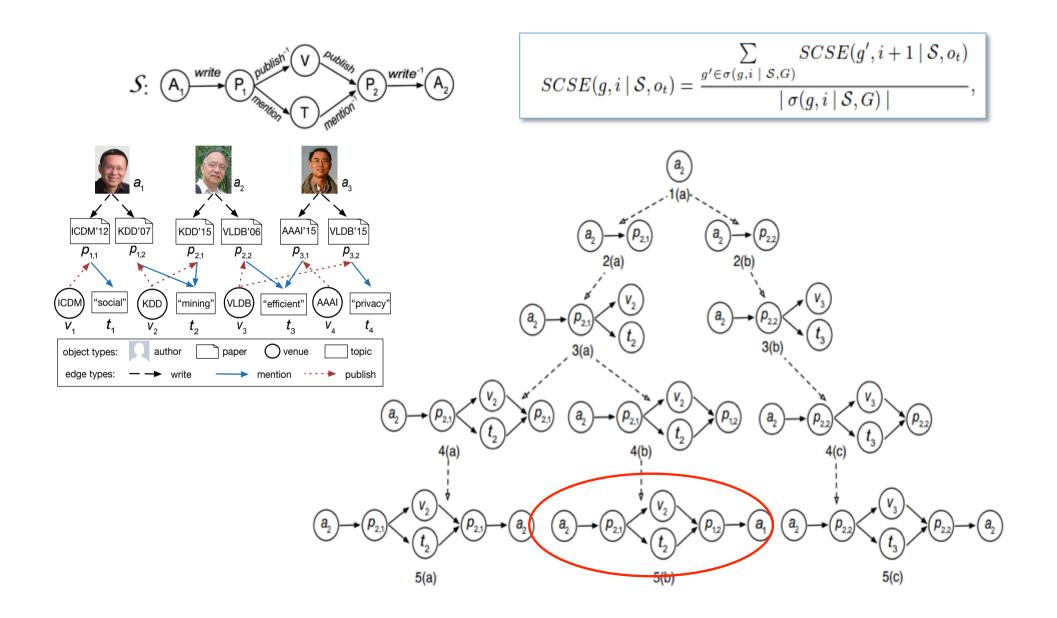

 $StructCount(x_0, y_0 | S) = |GraphIns(x_0, y_0 | S)|$

StructCount biases towards popular objects with a large number of links.

[Huang KDD'16] ZP. Huang "Meta Structure: Computing Relevance on Large Heterogeneous Information Networks" KDD 2016


Layers of Meta Structure


o The layer of meta structure is a topological ordering of a DAG


Relevance Measure 2: SCSE

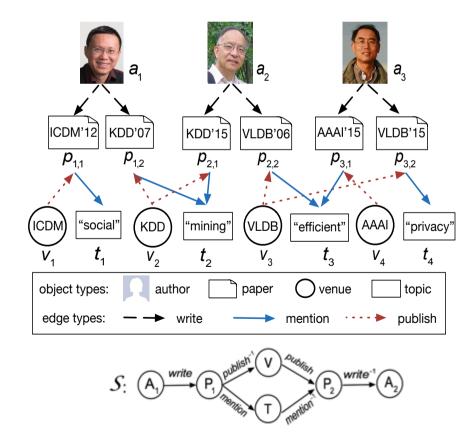
Structure Constrained Random Walk (SCSE): extension of PCRW.

Relevance Measure 2: SCSE

Relevance Measure 3: BSCSE

- Biased Structure Constrained Random Walk (BSCSE): extension of BPCRW.
 - -A combination of SC and SCSE
 - -SC $0 \leftarrow \rightarrow 1$ SCSE

$$BSCSE(g, i \mid \mathcal{S}, o_t) = \frac{\sum\limits_{g' \in \sigma(g, i \mid \mathcal{S}, G)} BSCSE(g', i + 1 \mid \mathcal{S}, o_t)}{\mid \sigma(g, i \mid \mathcal{S}, G) \mid^{\alpha}},$$


[Huang KDD'16] ZP. Huang "Meta Structure: Computing Relevance on Large Heterogeneous Information Networks" KDD 2016

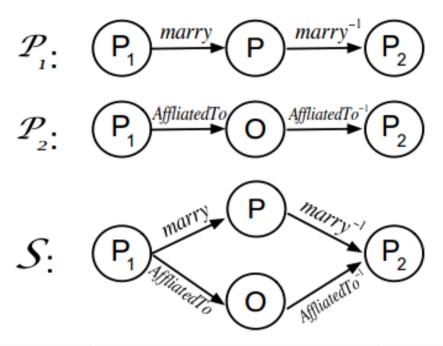
Relevance Measures: Summary

Meta Path	Meta Structure	Meaning
PathCount	StructCount	# of meta-path/structure instances
PCRW	SCSE	Random walk probability on meta- path/structure
BPCRW	BSCSE	Combination of count and probability

i-LTable

 Index the probability distribution starting from the i-th layer of a meta structure.

Key / layer 3	Value
<icdm, social></icdm, 	<pei, 1.0=""></pei,>
<kdd,< th=""><td><pei, 0.5=""></pei,></td></kdd,<>	<pei, 0.5=""></pei,>
mining>	<han, 0.5=""></han,>
<vldb, efficient></vldb, 	<han, 1.0=""></han,>
<vldb, privacy></vldb, 	<yang, 1.0=""></yang,>
<aaai, efficient></aaai, 	<yang, 1.0=""></yang,>


Experiment: Entity Resolution

 On YAGO, we have duplicated entities, e.g., *Barack_Obama* and *Presidency_Of_Barack_Obama*

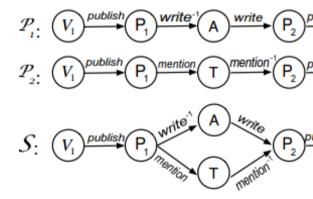
 We retrieve the top-k pairs; the high relevance of the node pairs indicates that the nodes are duplicated

o Area under PR-Curve (AUC)

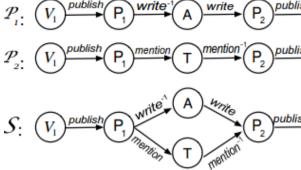
Experiment: Entity Resolution

		P1		P2		
Measure	PathCou nt	PCRW	PathSim	PathCou nt	PCRW	PathSim
AUC	0.1324	0.0120	0.0097	0.0003	0.0014	0.0002
	Linear Combination(optimal)			Meta Structure S		
Measure	PathCou nt	PCRW	PathSim	SC	SCSE	BSCSE*
AUC	0.2898	0.2606	0.2920	0.5556	0.5640	0.5640

Relevance Ranking


O We label the relevance of venues in DBLP_4_Area.

0 = not relevant; 1 = relevant; 2 = strongly relevant.


-E.g., <SIGMOD, VLDB>: 2; <SIGMOD, CIKM>: 1

Normalized Discounted Cumulative Gain (nDCG)

	<i>P</i> ₁			P ₂		
sure	PathCount	PCRW	PathSim	PathCount	PCRW	PathSim
CG	0.9004	0.9047	0.9083	0.8224	0.8901	0.8834
	Linear Combination(optimal)			Ν	leta Structure	S
isure	PathCount	PCRW	PathSim	SC	SCSE	BSCSE*
CG	0.9004	0.9100	0.9083	0.9056	0.9104	0.9130

Clustering

Clustering on venues in YAGO

Normalized
 Mutual
 Information
 (NMI) and
 Purity

	_			-	\bigcirc ψ	
	P_1				P ₂	
Measure	PathCount	PCRW	PathSim	PathCount	PCRW	Pat
NMI	0.4932	0.6866	0.6780	0.3595	0.6866	0.
	Linear Combination(optimal)			Ν	Aeta Structure	S
Measure	PathCount	PCRW	PathSim	SC	SCSE	BS
NMI	0.4932	0.6866	0.6780	0.3202	0.8065	0.
		P ₁			P ₂	
Measure	PathCount	PCRW	PathSim	PathCount	PCRW	Pat
Purity	2.75	3.50	3.00	2.50	3.50	2
	Linear Combination(optimal)			Ν	Ieta Structure	S
Measure	PathCount	PCRW	PathSim	SC	SCSE	BS
Purity	2.75	3.50	3.50	2.25	3.50	3

Outline

- Introduction
 - Motivation
 - Heterogeneous Information Network (HIN)
 - Applications
- Meta-Path
 - Definition
 - Relevance Search
 - Meta-Path Discovery
 - Query Recommendation
- Meta-Structure
 - Definition
 - Relevance Search
- Conclusions & Future Work

Conclusions

 Relevance of HIN objects can be defined based on meta-paths.

 Query-by-Example can be used to discover meta-paths.

 Meta-structure captures more complex relationships among HIN objects.

Future Work 1: Efficient Queries on HIN

- Given the complexity of relevance measures, how can we perform graphbased queries on HIN in an efficient and scalable manner?
 - Shortest paths, Top-k, centrality,...
 - Single-disk or cloud-based?

Future Work 2:

Meta-Path/Structure Discovery & Mining

- Design effective and efficient techniques to discover meta structures
- Use meta structures to perform data mining tasks on HINs, e.g., recommendation, classification and clustering.

Future Work 3: HIN and crowdsourcing

- Q1: Can we employ crowdsourcing solutions to discover meta- paths and structures?
- Q2: Can crowdsourcing be used to manage HIN?
- Q3: Can HIN be used to facilitate crowdsourcing? (See our VLDB'17 paper on DOCS)

Many Thanks!

Dr. Reynold Cheng URL: http://www.cs.hku.hk/~ckcheng/ email: ckcheng@cs.hku.hk

Our HKUCS Database Group

Zhipeng Huang

Yudian Zheng

Jing

Yan

Ka Yu Wong

Eddie

Ng

Jason Meng (Purdue)