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Why do we need crowd ?

3|
- Problems
i G brag Is Bill Gates
i now the CEO
of Microsoft ?
Submit YES O No O

-1 Possible Solutions
L 2\ \

M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. Crowddb: answering queries
with crowdsourcing. In SIGMOD Conference, pages 61-72, 2011.



Crowdsourcing Definition

FEE N =
0 Definition

Coordinating a crowd to do micro-tasks that
solve problems.

o Example
problems: An example crowd
entity resolution micro-task :
Object
iPhone 2nd Gen Are they the same? |

iPhone Two |Pad 2= ad Two
iPhone 2 (O YES O NE/
iPad Two
iPad 2 = d

iPad 3rd Gen




Amazon Mechanical Turk

- Requesters

Get Results

from Mechanical Turk Workers

Ask workers to complete HITs - Human Intelipence Tasks - and
pet results using Mechanecal Turk. Reqister Now

As a Mechanical Turk Requester you:

« Have access to a global, on-demand, 24 x 7 workforce
» Get thousands of HiTs completed in minutes
o Pay only when you're satisfied with the results

Fund your Load your Get
account

- Micro-Tasks

[ Are they the same? 1
iPad 2 = iPad Two

OYES (O NO

SUBMIT

Is Bill Gates
now the CEO
of Microsoft ?

YES O No O

Make Money
by working on HITs

HITs - Human Intelligence Tasks - are individual tasks that
you work on, Find HIT

As a Mechanical Turk Worker you:

¢ Can work from home
* Choose your own work hours
« Get paid for doing good work

Find an
interesting task

o Official Amazon Mechanical Blog (August, 2012)
more than 500,000 workers from 190 countries

http://mechanicalturk.typepad.com/blog/2012/08/mechanical-turk-featured-on-aws-report.html
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Problem Intuition (Worker Selection)-VLDB 12

oz 4
Given (1) a Task

(3) a set of workers

Worker Selection Problem:

Choose a subset of workers, such that the task can be
completed successfully (i.e., with high quality), in the
most economical manner ?

0 Next: Task and Worker

C. C. Cao, J. She, Y. Tong, and L. Chen. Whom to ask? jury selection for decision making tasks on
micro-blog services. PVLDB, 5(11):1495-1506, 2012



Task : Decision Making Task

8]
&« »

0 Answers are “yes” and “no
7 One (unknown) ground truth

Decision Making Task

Is Bill Gates 0 (Extensions) Multiple
now the CEO Choice Tasks

of Microsoft ?

YES O No O

0 Simplicity

Yudian Zheng, Reynold Cheng, Silviu Maniu and Luyi Mo. On optimality of jury selection in
crowdsourcing. In International Conference on Extending Database Technology (EDBT), 2015



Worker - (quality , cost)

o Each Worker: (quality, cost)

A

B

C

D

.

1)

&

o~

o,

(0.77,$9 ) (0.7, $5)

(0.65,$7 )| (0.6, $5)

(0.6,%2)

(0.25,$3)(0.2,56)

o Jury: a subset of workers ( Ex: {A,B,D})

C. C. Cao, J. She, Y. Tong, and L. Chen. Whom to ask? jury selection for decision making tasks on

micro-blog services. PVLDB, 5(11):1495-1506, 2012

X. Liu, M. Ly, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang. Cdas: A crowdsourcing data analytics system.
PVLDB, 5(10):1040-1051, 2012

P. Venetis and H. Garcia-Molina. Quality control for comparison microtasks. In CrowdKDD, 201 2.




Jury Selection Problem

I _— _— _— L] L] L] —_— — — —_— _— _— _— _— _— L] L] L] —_— — — —_— _— _— _— _— _— L] ._ L] —_— — — —_— = = =
I Decision Making Task - :" dldca J“mll')s Set ( quz:;lty, COStIZ . |
T k Is Bill Gates w k |
[ ) PY \

| as ° | now the CEO or ers. @ a s -~ -~ :
| of Microsoft ? P 4 & S [

| YvesQ 0 - .
(0.77,9 ] (0.7, 55) [ 0.65, 57 [ (0.6, 55)[ (0.6, 52) [ 0.25, 53 [ (0.2.56)] |

| * Select a Jury (subset of workers) such that the Jury Quality is |
' maximized in all Jury whose cost does not exceed the Budget.

e e o - - o o e o O D D B S B D B B B B BEE BN B BEE BN BN EEE BN B B BEE B B BEE B e S e . l

o For each Jury:
. : - (1) Jury Cost: $5+57+$6=%18

@ N | (2) Jury Quality: JQ ({0.7,0.65,0.2}),
)
‘ < Pr ( correctly deriving a result

(0.7,85)]|(0.65,87 ) (0.2,56 )

based on workers’ answers )



Jury Quality Computation (MV) - VLDB12

11|
o Jury Quality for Majority Voting Strategy

B C G

5,

. o MV : return the answer which
receives the highest votes

(0.7,85)](0.65,87 ) (0.2, %6 )

0 Cost({$5,57,56})=18<20

0 JQ{0.7,0.65,0.2},MV)
=0.7*0.65%0.8+0.770.35%0.2+0.370.65*0.2
+0.7*0.65%0.2=54.3%



Optimal Jury Set- VLDB 12 (Is it optimal ?)
2

o Enumerating all Jury set satisfying budget constraint
optimal jury set

B E

2

0 Cost({$9,$5,82})=16<20
0 JQ{0.77,0.7,0.6},MV)=77.42%

0

(0.77,89 ) (0.7,85)| (0.6, $2)

0 Question: s it optimal ?

Is it possible to provide a better solution for JSP, by
replacing MV with another strategy?
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Classification of Voting Strategies

Based on whether the result is

/
DeterministiclRandomized

___Strategies \ Strategies

G yes;h \

:' Voting 1' Random FZE’d ,

we can classify the voting strategies
into two categories:
deterministic voting strategy (left

Qar egy' / Stﬁ:qy }‘ part in the graph)
Majority . \ ”doh and
Voting ) '\ == | salot |\ randomized voting strategy (right
/ \ strategy , \ Voting . g gy (rig
Half . part in the graph).
Voting | —— T T e ——_————_—————_———_———
Strategy mg; \ Conseny/ \ :Exam le:
ighted andomized p e:
NG / | \ : /i

| Weighted E{O,l,]} 0.7,0.6,0.2

\W / i Majority Voting (Deterministic):
return 1

i Randomized Majority Voting
(Randomized):

return O with probability 1/3

- return 1 with probability 2/3

\rrafeg y
- {

returned with degree of randomness,



Existence of Optimal Voting Strategy
s

Given a Jury set J and a strategy S,
the corresponding Jury Quality
JQ(,S) can be computed. An
important question is:

/
DeterministiclRandomized

Strategies \ Strategies

Bayesian
Voting
Strategy

Randomized
MV
Strategy

Does there exists an optimal
strategy $*, such that given a Jury
set J, the JQ for this strategy is not
lower than the JQ for any strategy
(including all deterministic and
randomized strategies) ?

Majority
Voting
Strategy

Half
Voting
Strategy

Weighted
MV
Strategy

Randomized
Weighted
MV

JQ(J,S$*) =J)Q(J),S)forany $

We formally prove that the
Bayesian Voting Strategy (BV)
is the optimal strategy, i.e.,
$*= BV.



*Proof of Optimality

To answer this question, let us reconsider Definition 3. Let
h(V) = E[]l{g(v)=n}]. We have (i) (V) € [0,1]; and (ii)
E[]l{_g(v)=1}:| = l—h(V) AISD, let PU(V) = PI‘(V = V,t = 0),
and P;(V) = Pr(V = V,t = 1). Hence, JQ(J, S, a) can be
rewritten as

> e [Po(V) - h(V) + Pi(V) - (1= h(V))]

= D o [MV) - (Po(V) = Pi(V)) + Pi(V) ]

This gives us a hint to maximize JQ(J, S, «) and find the op-
timal voting strategy S™. Let h™ (V) = E[l{s+(v)=03}]. It is ob-
served that P; (V') is constant for a given V and h(V') € [0, 1] for
all S’s (no matter it is a deterministic one or a randomized one).
Thus, to optimize JQ(.J, S, o), it is required that

1. if Py(V) — P1(V) <0, h*(V)=0,and so, S*(V) = 1;
2. if PBy(V)— P (V) >0,h"(V) =1, and so, S*(V) = 0.



Bayesian Voting Strategy

Example:
{0,1,13 0.7,0.6,0.2

1 Majority Voting Strategy:

: givel vote for the supported answer

: 1 (by worker 1)
: 1 (by worker 2) + 1 (by worker 3) =

giveloglp/(1-p)] vote for the supported answer

0: log (0.7/0.3) = 0.8473
. log (0.6/0.4) + log (0.2/0.8) = -0.981

1
1
I
I
I
I
1
1
| Bayesian Voting Strategy (Deterministic Strategy):
1
I
1
1
I
1
I
I

A

B

E

5|5,

i,

(0.77, $9 )

(0.7,85)

(0.6,52)

JQ({0.77,0.7,0.6},MV)

=77.42%
JSP solution: {A, B, E}

A

E

G

2

é -_\g

>

<

(0.77, $9

(0.6,82)

(0.25, $3 )

(0.2,56)

JQ({0.77,0.6,0.25,0.2},BV)
=86.95%

JSP solution: {A, E, F, G}



JSP for BV : Complexity (1)(2)

e
1. Given Jury J, JQ computation for BV, or JQ(J,BV)

Recall that the JQ computation requires enumerating
exponential number (w.r.t |J| ) of states, i.e.,

1{0,1}| *|{0,1}| NI =2141+

2. The number of Jury set satisfying Budget
Constraint is

Exponential w.r.t. N, in the worst case 2N



Complexity 1 of JSP

1. Given Jury J, JQ computation for BV, or JQ(J,BV)
Recall that the JQ computation requires enumerating
exponential number (w.r.t |J| ) of states, i.e.,

|{O,]}|""|{O,'|}| |J|=2|J|+1

o NP-hardness of JQ computation

o Polynomial Approximation Algorithm

(with Pruning Technique)
o Bounded by 1% Error



*Q1: Computing JQ for BV is NP-hard
B

Partition Problem (NP-Complete Problem)

Input: W={wi, wa, -=- , wn }, wjisinteger (I<i<n)
Output: yes/no
Decide whether W can be partitioned into two disjoint multi-sets

W; and W5, such that the sum of elements in W, is equal to the sum
of elements in W/>.

Reduction
Input: W={wi, wa, -=- , wn },wjisinteger (I<i<n)

Construct J={ji, j2. === . jn}and )" ={ji. j2, === . jn+1 }
based on W, then
(1) it JO(J"',BV)>JO(J,BV) , then

the output for partition problem of W is "yes";
(2)if JO(J',BV)< JO(J,BV) , then

the output for partition problem of W is "no";

In order to prove the NP-
hardness of computing JQ
for BV, we can reduce the
partition problem, a well-
known NP-Complete
Problem (also a decision
problem) to the problem
of computing JQ for BV.

Since computing JQ for BV
isnotin NP (itis not a
decision problem), then it
is a NP-hard problem.



*Q1:Bucket-Based Approx. Alg. (Pruning)

_21 |
Settings: Approximations
4
o(q1) = o0(g2) = 1.2 ola) = log1_q_ log 099 46
‘ 1-0.99
Compute JQ(J,BV): Aggregated

o(g 2.4)q.9,)

o(q,) o

Vl(l—qzh 44,
)

(0.1)

bucket number

——» Representitasa

” bucket number

~o(g) @;n
~o(@)~h C24)1-4)01-4,))

Real Computed JQ(J,BV):
0.9, +[q,(1-q,) +(1-g,)q,1/2

d :bucketsize 7+

0 I ‘.‘. upper
g [ 40 B[4

A=log—ql B=log1(17—2
I-g¢, —4




*Q1l:Approximation Error Bound
B

Notations:
Let  JO(J,BV)  denote the estimated JQ of the approximation algorithm,
and JO(J,BV) denote the real JQ.

We can prove:

W JOJ,BV)< JO(J,BV) and

1
| , _ numBuckels !
@  JO(J.BV)-JO(J,BV) < era — 1 /!d' .

The time complexity of approximation algorithm is O (dn3) and

if d > 200 , the approximation error is bounded wi'tl_1i_n_l %. .
1

Real: 80% :

within 1% approximation error bound.



Complexity 2 of JSP
I

2. The number of Jury set satisfying Budget
Constraint is

Exponential w.r.t. N, in the worst case 2N

o NP-hardness of JSP

o Simulated Annealing Heuristic for general JSP



*Q2- NP-hardness

e 000
Combinatorial Optimization Problem

* Similar to Knapsack Problem, with the difference in
the Objective Function

*NP-hard, intuitively as.computing the JQ
(Objective Function) is NP-hard

“Even though regarding it as an oracle, deriving the
optimal solution is also NP-hard
=> N-th order knapsack problem



*Q2- Simulated Annealing Heuristic

25|
Simulated Annealing Heuristic

* Hoeuristic solving combinatorial optimization

problem
* avoid local minimum, probability of accepting a
worse place minimize the cost
! ”/7 function: ¢(x)
’ c(Xx
QY global minimum
%0 X "

starting point x0O local minimum



Jury Quality

*Simulated :Different Voting Strategies

100% 100%
80% 80%
2 z 3
oy &
40% > > 40%
= 3 MV —p—
20% 20% | BV —w— .
RB —»—
A e i 0% bt RMV, 8~
0 010203040506 070809 1 ’ 1 2 3 4 5 6 7 & 9 1011 12 13 1 2 3 4 5 6 7 8 9 10111213
n Jury Size (n) Jury Size (n)
(a) Varying u (b) Varying n (u = 0.3) (¢c) Varying n (u = 0.7)

Randomly generate 10 workers with quality AN (1,0.1%)

MV: Majority Voting

BV: Bayesian Voting

RB: Random Ballot Voting (Randomly returns O or 1)
RMV: Randomized Majority Voting




*Simulated : Proposed Approx. Algorithm

Observe the effect of our proposed approximation
algorithms

1005 | 0.030% 700
— E 002s% 600 3
1 g
o = 0.020% Ly 300 E
E W% 2 S 400 A
& S 0015% - -
= B3% -5 300 =
2 Variance=0.01 —8— £ 0.010% £ w0 2
80% Variance=0.03 —#— 'g . B
Variance=().05 —»— = 0.005% 100 =
N Variance={).1() =——f—
5% 0.000% 0 0
05 06 07 08 09 1 50 100 150 200 0.000% 0.002% 0.004% 0.006% 0.008% 0.010% 100 150 200 250 300 350 400 450 500
L numBuckets Approximation Error Jury Size (n)
. 2 . . . .
(a) Varying ¢ and o (b) Varying num Buckets (c) Approximation Error (d) Varying n

(a) effect with the change of mean and variance
(b) vary the bucket number

(c) approximation error bound

(d) pruning techniques



Real: End-to-End System Comparison

Collect Data from AMT:
600 questions, each question answered by 20 workers

Known Ground Truth -> workers’ qualities

100%% 100% 10—
99 o b 99, ]
= 9% 2 2 “%-'_H_“I—g.__-_l_"
ERR g %I g 979
g D% = 85% | ;Hn, S 1
=

= 5% - 80 | = RS ‘.
4% 94% [ MVIS =t ]

93% 5% gyey LEWS —W— L L .
2 3 4 5 6 7 & 9 10 4 6 % 10 12 14 16 18 20 0.0 0.2 03 0.4 05 0.6 07 0.8 09 1

Budget The Number of Jurors (W) The Standard Deviation of Cost

(b) Varying B (c) Varying N (d) Varying &

C. C. Cao, J. She, Y. Tong, and L. Chen. Whom to ask? jury selection for decision making tasks on
micro-blog services. PVLDB, 5(11):1495-1506, 2012
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System (Optimal Jury Selection System)

I Decision Making Task All candidate Jurors Set ( quality, cost) I
| | IsBill Gates s - ’_ = ,F\ €< — |
now the CEO 3 = = |
: of Microsoft ? 6_!, S W..a |
L YES o No o (0.7:1: $9 ) (0.7,%5)((0.65,87 ) (0.6,8$5)]|(0.6,9%2)((0.25,83 ) (0.2, %6 ) I
Budget-Quality Table | ————— - -
- Budget 14
Budge t-Quality Table | Trade-Off 13 - =
Budget Optimal Jury Set Quality Required i > =)
5 |[{EF} 75% 5| : )
10 [{F,G} 80% 9 : L 1
5 [(B.RGI | s | 14| R T O
20 {AE,F, G} 86.95% 20 I
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