

THE UNIVERSITY OF HONG KONG

D E P A R T M E N T O F COMPUTER SCIENCE

Title: On Optimality of Jury Selection Problem in Crowdsourcing

Yudian, Reynold, Silviu, Luyi EDBT 2015

Introduction (Crowdsourcing)

Problem Definition (Jury Selection Problem)

Our Solution (Optimality)

Conclusion

Why do we need crowd ?

Problems

 $oldsymbol{O}$

Which picture visualizes better "Golden Gate Bridge"

Possible Solutions

Submit

M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. Crowddb: answering queries with crowdsourcing. In SIGMOD Conference, pages 61-72, 2011.

Crowdsourcing Definition

Definition

Coordinating a crowd to do micro-tasks that solve problems.

Example

problems: entity resolution An example micro-task :

crowd

Amazon Mechanical Turk

Official Amazon Mechanical Blog (August, 2012) more than 500,000 workers from 190 countries

http://mechanicalturk.typepad.com/blog/2012/08/mechanical-turk-featured-on-aws-report.html

Introduction (Crowdsourcing)

Problem Definition (Jury Selection Problem)

Our Solution (Optimality)

Conclusion

Problem Intuition (Worker Selection)-VLDB 12

Given (1) a Task

- (2) a fixed Budget B
- (3) a set of workers

Worker Selection Problem:

Choose a subset of workers, such that the task can be completed successfully (i.e., with high quality), in the most economical manner ?

Next: Task and Worker

C. C. Cao, J. She, Y. Tong, and L. Chen. Whom to ask? jury selection for decision making tasks on micro-blog services. PVLDB, 5(11):1495–1506, 2012

Task : Decision Making Task

Answers are "yes" and "no"
 One (unknown) ground truth

Decision Making Task	
Is Bill Gates	
now the CEO	
of Microsoft ?	
YES O	NO O

- Simplicity
- (Extensions) Multiple Choice Tasks

Yudian Zheng, Reynold Cheng, Silviu Maniu and Luyi Mo. On optimality of jury selection in crowdsourcing. In International Conference on Extending Database Technology (EDBT), 2015

Worker - (quality, cost)

9

□ Each Worker: (quality, cost) Ex: A (0.77, \$9)

□ Jury: a subset of workers (Ex: {A,B,D})

C. C. Cao, J. She, Y. Tong, and L. Chen. Whom to ask? jury selection for decision making tasks on micro-blog services. PVLDB, 5(11):1495–1506, 2012
X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang. Cdas: A crowdsourcing data analytics system. PVLDB, 5(10):1040–1051, 2012
P. Venetis and H. Garcia-Molina. Quality control for comparison microtasks. In CrowdKDD, 2012.

Jury Selection Problem

* Select a Jury (subset of workers) such that the Jury Quality is maximized in all Jury whose cost does not exceed the Budget.

For each Jury:

(1) Jury Cost: \$5+\$7+\$6=\$18
(2) Jury Quality: JQ ({0.7,0.65,0.2}),
Pr (correctly deriving a result based on workers' answers)

Jury Quality Computation (MV) - VLDB12

11

Jury Quality for Majority Voting Strategy

MV : return the answer which receives the highest votes

 \Box Cost({\$5,\$7,\$6})=18 \leq 20

□ JQ({0.7,0.65,0.2},MV) =0.7*0.65*0.8+0.7*0.35*0.2+0.3*0.65*0.2 +0.7*0.65*0.2=54.3%

Optimal Jury Set- VLDB 12 (Is it optimal ?)

12

Enumerating all Jury set satisfying budget constraint optimal jury set

□ $Cost({\$9,\$5,\$2})=16 \le 20$ □ $JQ({0.77,0.7,0.6},MV)=77.42\%$

Question: Is it optimal ?

Is it possible to provide a better solution for JSP, by replacing MV with another strategy?

Introduction (Crowdsourcing)

Problem Definition (Jury Selection Problem)

Our Solution (Optimality)

Conclusion

Classification of Voting Strategies

Based on whether the result is returned with degree of randomness, we can classify the voting strategies into two categories: deterministic voting strategy (left part in the graph) and randomized voting strategy (right part in the graph).

Example: {0,1,1} 0.7,0.6,0.2 Majority Voting (Deterministic): return 1 Randomized Majority Voting (Randomized): return 0 with probability 1/3 return 1 with probability 2/3

Existence of Optimal Voting Strategy

Given a Jury set J and a strategy S, the corresponding Jury Quality JQ(J,S) can be computed. An important question is:

Does there exists an optimal strategy S*, such that given a Jury set J, the JQ for this strategy is not lower than the JQ for any strategy (including all deterministic and randomized strategies) ?

 $JQ(J, S^*) \ge JQ(J, S)$ for any S

We formally prove that the Bayesian Voting Strategy (BV) is the optimal strategy, i.e., $S^* = BV$.

*Proof of Optimality

To answer this question, let us reconsider Definition 3. Let $h(V) = \mathbb{E}[\mathbb{1}_{\{S(V)=0\}}]$. We have (i) $h(V) \in [0,1]$; and (ii) $\mathbb{E}[\mathbb{1}_{\{S(V)=1\}}] = 1 - h(V)$. Also, let $P_0(V) = \Pr(\mathbf{V} = V, \mathbf{t} = 0)$, and $P_1(V) = \Pr(\mathbf{V} = V, \mathbf{t} = 1)$. Hence, $JQ(J, S, \alpha)$ can be rewritten as

$$\sum_{V \in \Omega} \left[P_0(V) \cdot h(V) + P_1(V) \cdot (1 - h(V)) \right]$$

=
$$\sum_{V \in \Omega} \left[h(V) \cdot (P_0(V) - P_1(V)) + P_1(V) \right]$$

This gives us a hint to maximize $JQ(J, S, \alpha)$ and find the optimal voting strategy S^* . Let $h^*(V) = \mathbb{E}[\mathbb{1}_{\{S^*(V)=0\}}]$. It is observed that $P_1(V)$ is constant for a given V and $h(V) \in [0, 1]$ for all S's (no matter it is a deterministic one or a randomized one). Thus, to optimize $JQ(J, S, \alpha)$, it is required that

1. if $P_0(V) - P_1(V) < 0$, $h^*(V) = 0$, and so, $S^*(V) = 1$;

2. if $P_0(V) - P_1(V) \ge 0$, $h^*(V) = 1$, and so, $S^*(V) = 0$.

Bayesian Voting Strategy

```
Example:
{0,1,1} 0.7,0.6,0.2
```

```
Majority Voting Strategy:
give1 vote for the supported answer
```

```
0: 1 (by worker 1)
1: 1 (by worker 2) + 1 (by worker 3) = 2
```

Bayesian Voting Strategy (Deterministic Strategy): give log[p/(1-p)] vote for the supported answer

0: log (0.7/0.3) = 0.8473 1: log (0.6/0.4) + log (0.2/0.8) = -0.981

JQ({0.77,0.7,0.6},MV) =77.42%

JSP solution: {A, B, E}

JQ({0.77,0.6,0.25,0.2},BV) =86.95%

JSP solution: {A, E, F, G}

JSP for BV : Complexity (1)(2)

18

1. Given Jury J, JQ computation for BV, or JQ(J,BV)

Recall that the JQ computation requires enumerating exponential number (w.r.t |J|) of states, i.e.,

 $|{0,1}|*|{0,1}|^{|J|}=2^{|J|+1}$

2. The number of Jury set satisfying Budget Constraint is

Exponential w.r.t. N, in the worst case 2^{N}

Complexity 1 of JSP

19

1. Given Jury J, JQ computation for BV, or JQ(J,BV) Recall that the JQ computation requires enumerating exponential number (w.r.t |J|) of states, i.e.,

 $|\{0,1\}|*|\{0,1\}|^{|||}=2^{|||+1}$

- □ NP-hardness of JQ computation
- Polynomial Approximation Algorithm (with Pruning Technique)
- Bounded by 1% Error

*Q1: Computing JQ for BV is NP-hard

Partition Problem (NP-Complete Problem)

Input: $W = \{ w_1, w_2, \dots, w_n \}$, w_i is integer $(1 \le i \le n)$ Output: yes/no

Decide whether W can be partitioned into two disjoint multi-sets W_1 and W_2 , such that the sum of elements in W_1 is equal to the sum of elements in W_2 .

Reduction

Input: $W = \{ w_1, w_2, \dots, w_n \}, w_i \text{ is integer } (1 \le i \le n)$

Construct $J = \{ j_1, j_2, \dots, j_n \}$ and $J' = \{ j_1, j_2, \dots, j_{n+1} \}$ based on W, then

(1) if JQ(J', BV) > JQ(J, BV) , then the output for partition problem of W is "yes";
(2) if JQ(J', BV) ≤ JQ(J, BV) , then the output for partition problem of W is "no"; In order to prove the NPhardness of computing JQ for BV, we can reduce the partition problem, a wellknown NP-Complete Problem (also a decision problem) to the problem of computing JQ for BV.

Since computing JQ for BV is not in NP (it is not a decision problem), then it is a NP-hard problem.

*Q1:Bucket-Based Approx. Alg. (Pruning)

***Q1:Approximation Error Bound**

Notations:

Let	$\widehat{JQ}(J,BV)$
and	JQ(J, BV)

denote the estimated JQ of the approximation algorithm, denote the real JQ.

We can prove:

Complexity 2 of JSP

2. The number of Jury set satisfying Budget Constraint is

Exponential w.r.t. N, in the worst case 2^{N}

NP-hardness of JSP

Simulated Annealing Heuristic for general JSP

*Q2- NP-hardness

24

Combinatorial Optimization Problem

• Similar to Knapsack Problem, with the difference in the Objective Function

*NP-hard, intuitively as computing the JQ (Objective Function) is NP-hard

*Even though regarding it as an oracle, deriving the optimal solution is also NP-hard => N-th order knapsack problem

*Q2- Simulated Annealing Heuristic

25

Simulated Annealing Heuristic

- Heuristic solving combinatorial optimization
 problem
- avoid local minimum, probability of accepting a worse place minimize the cost

*Simulated : Different Voting Strategies

Randomly generate 10 workers with quality $\mathcal{N}(\mu, 0.1^2)$

MV: Majority Voting BV: Bayesian Voting RB: Random Ballot Voting (Randomly returns 0 or 1) RMV: Randomized Majority Voting

*Simulated : Proposed Approx. Algorithm

Observe the effect of our proposed approximation algorithms

(a) effect with the change of mean and variance
(b) vary the bucket number
(c) approximation error bound
(d) pruning techniques

Real: End-to-End System Comparison

Collect Data from AMT: 600 questions, each question answered by 20 workers

Known Ground Truth -> workers' qualities

C. C. Cao, J. She, Y. Tong, and L. Chen. Whom to ask? jury selection for decision making tasks on micro-blog services. PVLDB, 5(11):1495–1506, 2012

Introduction (Crowdsourcing)

Problem Definition (Jury Selection Problem)

Our Solution (Optimality)

□ Conclusion

System (Optimal Jury Selection System)

THE UNIVERSITY OF HONG KONG

Thank you !

Contact Info: Yudian Zheng DataBase Group Computer Science Department The University of Hong Kong