THE UNIVERSITY OF HONG KONG
$\begin{array}{lllllllllllll}D & \epsilon & P & A & R & T & M & \epsilon & N & T & O & F \\ C & O & M & P & J & C & R & S & C & E & C & C\end{array}$

Title:
 On Optimality of Jury Selection Problem in Crowdsourcing

Yudian, Reynold, Silviu, Luyi
EDBT 2015

Outline

\square Introduction (Crowdsourcing)
\square Problem Definition (Jury Selection Problem)
\square Our Solution (Optimality)
\square Conclusion

Why do we need crowd?

Problems

Is Bill Gates
now the CEO
of Microsoft?
Yes O No O

\square Possible Solutions

M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. Crowddb: answering queries with crowdsourcing. In SIGMOD Conference, pages 61-72, 2011.

Crowdsourcing Definition

Definition

Coordinating a crowd to do micro-tasks that solve problems.

\square Example
problems:
entity resolution
An example micro-task :

Amazon Mechanical Turk

Requesters

Get Results

from Mechanical Turk Workers
Ask workers to complete HITs - Human Intelligence Tasks - and get results using Mechanical Turk. Gegirter Now
As a Mechanical Turk Requester you:

- Have access to a global, on-demand, 24×7 workforce
: Get thousands of HITs completed in minutes
- Pay only when you're satisfied with the results

Fund your
Fund your
account

Get Searted

Micro-Tasks

Are they the same?
iPad 2 = iPad Two
OYES ONO
SUBMIT

Is Bill Gates now the CEO of Microsoft? Yes ○ no ○

Workers

Make Money

by working on HITs
HITs - Human Intelligence Tasks - are individual tasks that you work on. Find HITs now.

As a Mechanical Turk Worker you:

- Can work from home
- Choose your own work hours
- Get paid for doing good work

\square Official Amazon Mechanical Blog (August, 2012) more than 500,000 workers from 190 countries

Outline

\square Introduction (Crowdsourcing)
\square Problem Definition (Jury Selection Problem)
\square Our Solution (Optimality)
\square Conclusion

Problem Intuition (Worker Selection)-VLDB 12

Given (1) a Task
(2) a fixed Budget B
(3) a set of workers

Worker Selection Problem:
Choose a subset of workers, such that the task can be completed successfully (i.e., with high quality), in the most economical manner ?
\square Next: Task and Worker
C. C. Cao, J. She, Y. Tong, and L. Chen. Whom to ask? jury selection for decision making tasks on micro-blog services. PVLDB, 5(11):1495-1506, 2012

Task : Decision Making Task

\square Answers are "yes" and "no"

\square One (unknown) ground truth

Decision Making Task
 Is Bill Gates now the CEO of Microsoft?
 Yes O
 No O

\square Simplicity
\square (Extensions) Multiple Choice Tasks

Yudian Zheng, Reynold Cheng, Silviu Maniu and Luyi Mo. On optimality of jury selection in crowdsourcing. In International Conference on Extending Database Technology (EDBT), 2015

Worker - (quality, cost)

E Each Worker: (quality, cost) Ex: A $(0.77, \$ 9)$

A	B	C	D	E	F	G
$(0.77, \$ 9)$	$(0.7, \$ 5)$	$(0.65, \$ 7)$	$(0.6, \$ 5)$	$(0.6, \$ 2)$	$(0.25, \$ 3)$	$(0.2, \$ 6)$

\square Jury: a subset of workers (Ex: $\{A, B, D\}$)
C. C. Cao, J. She, Y. Tong, and L. Chen. Whom to ask? jury selection for decision making tasks on micro-blog services. PVLDB, 5(1) 1):1495-1506, 2012
X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang. Cdas: A crowdsourcing data analytics system. PVLDB, 5(10):1040-1051, 2012
P. Venetis and H. Garcia-Molina. Quality control for comparison microtasks. In CrowdKDD, 2012.

Jury Selection Problem

: Select a Jury (subset of workers) such that the Jury Quality is ! maximized in all Jury whose cost does not exceed the Budget.
\square For each Jury:

(1) Jury Cost: $\$ 5+\$ 7+\$ 6=\$ 18$
(2) Jury Quality: JQ (\{0.7,0.65,0.2\}),
Pr (correctly deriving a result
based on workers' answers)

Jury Quality Computation (MV) - VLDB12

- Jury Quality for Majority Voting Strategy

\square MV : return the answer which receives the highest votes
$\square \operatorname{Cost}(\{\$ 5, \$ 7, \$ 6\})=18 \leqslant 20$
- JQ(\{0.7,0.65,0.2\},MV)
$=0.7 * 0.65 * 0.8+0.7 * 0.35 * 0.2+0.3 * 0.65 * 0.2$ $+0.7 * 0.65 * 0.2=54.3 \%$

Optimal Jury Set- VLDB 12 (Is it optimal ?)

\square Enumerating all Jury set satisfying budget constraint optimal jury set

$$
\begin{aligned}
& \square \operatorname{Cost}(\{\$ 9, \$ 5, \$ 2\})=16 \leqslant 20 \\
& J Q(\{0.77,0.7,0.6\}, M V)=77.42 \%
\end{aligned}
$$

\square Question: Is it optimal ?
Is it possible to provide a better solution for JSP, by replacing MV with another strategy?

Outline

\square Introduction (Crowdsourcing)
\square Problem Definition (Jury Selection Problem)
\square Our Solution (Optimality)
\square Conclusion

Classification of Voting Strategies

Based on whether the result is returned with degree of randomness, we can classify the voting strategies into two categories:
deterministic voting strategy (left part in the graph)
and
randomized voting strategy (right part in the graph).
Example:
$\{0,1,1\}$ 0.7,0.6,0.2
Majority Voting (Deterministic):
return 1
Randomized Majority Voting
(Randomized):
return 0 with probability $1 / 3$
return 1 with probability $2 / 3$

Existence of Optimal Voting Strategy

Given a Jury set J and a strategy S, the corresponding Jury Quality JQ(J,S) can be computed. An important question is:

Does there exists an optimal strategy S^{*}, such that given a Jury set J, the JQ for this strategy is not lower than the JQ for any strategy (including all deterministic and randomized strategies) ?
$J Q\left(J, S^{*}\right) \geqslant J Q(J, S)$ for any S
We formally prove that the Bayesian Voting Strategy (BV) is the optimal strategy, i.e., $S^{*}=B V$.

*Proof of Optimality

To answer this question, let us reconsider Definition $\overline{3}$. Let $h(V)=\mathbb{E}\left[\mathbb{1}_{\{S(V)=0\}}\right]$. We have (i) $h(V) \in[0,1]$; and (ii) $\mathbb{E}\left[\mathbb{1}_{\{S(V)=1\}}\right]=1-h(V)$. Also, let $P_{0}(V)=\operatorname{Pr}(\mathbf{V}=V, \mathbf{t}=0)$, and $P_{1}(V)=\operatorname{Pr}(\mathbf{V}=V, \mathbf{t}=1)$. Hence, $J Q(J, S, \alpha)$ can be rewritten as

$$
\begin{aligned}
& \sum_{V \in \Omega}\left[P_{0}(V) \cdot h(V)+P_{1}(V) \cdot(1-h(V))\right] \\
= & \sum_{V \in \Omega}\left[h(V) \cdot\left(P_{0}(V)-P_{1}(V)\right)+P_{1}(V)\right]
\end{aligned}
$$

This gives us a hint to maximize $J Q(J, S, \alpha)$ and find the optimal voting strategy S^{*}. Let $h^{*}(V)=\mathbb{E}\left[\mathbb{1}_{\left\{S^{*}(V)=0\right\}}\right]$. It is observed that $P_{1}(V)$ is constant for a given V and $h(V) \in[0,1]$ for all S 's (no matter it is a deterministic one or a randomized one). Thus, to optimize $J Q(J, S, \alpha)$, it is required that

1. if $P_{0}(V)-P_{1}(V)<0, h^{*}(V)=0$, and so, $S^{*}(V)=1$;
2. if $P_{0}(V)-P_{1}(V) \geq 0, h^{*}(V)=1$, and so, $S^{*}(V)=0$.

Bayesian Voting Strategy

Example:

$$
\{0,1,1\} \quad 0.7,0.6,0.2
$$

Majority Voting Strategy:
give 1 vote for the supported answer
0: 1 (by worker 1)
1: 1 (by worker 2$)+1($ by worker 3) $=2$
Bayesian Voting Strategy (Deterministic Strategy): give $\log [p /(1-p)]$ vote for the supported answer
$0: \log (0.7 / 0.3)=0.8473$
1: $\log (0.6 / 0.4)+\log (0.2 / 0.8)=-0.981$

JQ(\{0.77,0.7,0.6\},MV)
= 77.42\%

JSP solution: $\{A, B, E\}$

$J Q(\{0.77,0.6,0.25,0.2\}, B V)$
= 86.95\%
JSP solution: $\{A, E, F, G\}$

JSP for BV : Complexity (1)(2)

1. Given Jury J, JQ computation for BV, or JQ(J,BV)

Recall that the JQ computation requires enumerating exponential number (w.r.t $|\mathrm{J}|$) of states, i.e.,

$$
|\{0,1\}|^{*}|\{0,1\}|^{|J|=2^{|J|+1}}
$$

2. The number of Jury set satisfying Budget

Constraint is

Exponential w.r.t. N , in the worst case 2^{N}

Complexity 1 of JSP

1. Given Jury J, JQ computation for BV , or JQ(J,BV) Recall that the JQ computation requires enumerating exponential number (w.r.t |J|) of states, i.e.,

$$
|\{0,1\}|^{*}|\{0,1\}|^{|J|=2^{|J|+1}}
$$

\square NP-hardness of JQ computation
\square Polynomial Approximation Algorithm (with Pruning Technique)
\square Bounded by 1\% Error

*Q1: Computing JQ for BV is NP-hard

Partition Problem (NP-Complete Problem)
Input: $W=\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}, w_{i}$ is integer $(1 \leqslant i \leqslant n)$ Output: yes/no

Decide whether W can be partitioned into two disjoint multi-sets W_{1} and W_{2}, such that the sum of elements in W_{1} is equal to the sum of elements in W_{2}.

Reduction

Input: $\mathcal{W}=\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}, w_{i}$ is integer $(1 \leqslant i \leqslant n)$
Construct $\mathrm{J}=\left\{\mathrm{j}_{1}, \mathrm{j}_{2}, \cdots, \mathrm{j}_{\mathrm{n}}\right\}$ and $\mathrm{J}^{\prime}=\left\{\mathrm{j}_{1}, \mathrm{j}_{2}, \cdots, \mathrm{j}_{\mathrm{n}+1}\right\}$ based on W , then
(1) if $J Q\left(J^{\prime}, B V\right)>J Q(J, B V)$, then
the output for partition problem of W is "yes";
(2) if $J Q\left(J^{\prime}, B V\right) \leq J Q(J, B V)$, then
the output for partition problem of W is "no";

In order to prove the NPhardness of computing JQ for BV, we can reduce the partition problem, a wellknown NP-Complete Problem (also a decision problem) to the problem of computing JQ for BV.

Since computing JQ for BV is not in NP (it is not a decision problem), then it is a NP-hard problem.

*Q1:Bucket-Based Approx. Alg. (Pruning)

Settings:

$$
\sigma\left(q_{1}\right)=\sigma\left(q_{2}\right)=1.2 \quad \sigma\left(q_{i}\right)=\log \frac{q_{i}}{1-q_{i}}
$$

Approximations

$$
\log \frac{0.99}{1-0.99}<4.6
$$

Aggregated bucket number

Compute JQ(J,BV):

Real Computed JQ(J,BV):
$q_{1} q_{2}+\left[q_{1}\left(1-q_{2}\right)+\left(1-q_{1}\right) q_{2}\right] / 2$

$A=\log \frac{q_{1}}{1-q_{1}} \quad B=\log \frac{q_{2}}{1-q_{2}}$

numBuckets

*Q1:Approximation Error Bound

Notations:
Let $\widehat{J Q}(J, B V)$ denote the estimated $J Q$ of the approximation algorithm, and $J Q(J, B V)$ denote the real $J Q$.

We can prove:

$$
\begin{equation*}
\widehat{J Q}(J, B V) \leq J Q(J, B V) \quad \text { and } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
J Q(J, B V)-\widehat{J Q}(J, B V)<e^{\frac{5}{4 \cdot d}}-1 \tag{2}
\end{equation*}
$$

The time complexity of approximation algorithm is $\mathcal{O}\left(d n^{3}\right)$ and if $d \geq 200$, the approximation error is bounded within 1%.
[Real: $\overline{8} \overline{0} \%-----7$
The polynomial algorithm will give within 1% approximation error bound.

Complexity 2 of JSP

2. The number of Jury set satisfying Budget Constraint is

Exponential w.r.t. N , in the worst case 2^{N}
\square NP-hardness of JSP
\square Simulated Annealing Heuristic for general JSP

*Q2- NP-hardness

Combinatorial Optimization Problem

- Similar to Knapsack Problem, with the difference in the Objective Function
*NP-hard, intuitively as computing the JQ
(Objective Function) is NP-hard
*Even though regarding it as an oracle, deriving the optimal solution is also NP-hard
=> N-th order knapsack problem

*Q2- Simulated Annealing Heuristic

Simulated Annealing Heuristic

- Heuristic solving combinatorial optimization problem
- avoid local minimum, probability of accepting a worse place minimize the cost

*Simulated :Different Voting Strategies

(a) Varying μ

(b) Varying $n(\mu=0.3)$

(c) Varying $n(\mu=0.7)$

Randomly generate 10 workers with quality $\mathcal{N}\left(\mu, 0.1^{2}\right)$
MV: Majority Voting
BV: Bayesian Voting
RB: Random Ballot Voting (Randomly returns 0 or 1)
RMV: Randomized Majority Voting

*Simulated : Proposed Approx. Algorithm

Observe the effect of our proposed approximation algorithms

(a) Varying μ and σ^{2}

(b) Varying numBuckets

(c) Approximation Error

(d) Varying n
(a) effect with the change of mean and variance
(b) vary the bucket number
(c) approximation error bound
(d) pruning techniques

Real: End-to-End System Comparison

Collect Data from AMT:

600 questions, each question answered by 20 workers

Known Ground Truth -> workers' qualities

(b) Varying B

(c) Varying N

(d) Varying $\widehat{\sigma}$
C. C. Cao, J. She, Y. Tong, and L. Chen. Whom to ask? jury selection for decision making tasks on micro-blog services. PVLDB, 5(11):1495-1506, 2012

Outline

\square Introduction (Crowdsourcing)
\square Problem Definition (Jury Selection Problem)
\square Our Solution (Optimality)
\square Conclusion

System (Optimal Jury Selection System)

Thank you!

Contact Info: Yudian Zheng DataBase Group Computer Science Department The University of Hong Kong

