SIGMOD'03 Evaluating Probabilistic Queries over Imprecise Data

Reynold Cheng, Dmitri V. Kalashnikov, Sunil Prabhakar

Department of Computer Science, Purdue University http://www.cs.purdue.edu/place/

Sensor-Based Applications

- Sensors monitor external environment continuously
- Sensor readings are sent back to the application
- Decisions are made based on these readings
 - A moving object database monitors locations of mobile devices
 - An air-conditioning system uses temperature sensors to adjust the temperature of each room
 - Sensors are used to detect if hazardous materials are present and how they are spreading

Probabilistic Queries

Data Uncertainty

- A database/server collects readings from sensors
- The database cannot contain the exact status of an entity being monitored at every point in time
 - Limited network bandwidth
 - Scarce battery power
- Readings are sent periodically, or on-demand
- The value of entity being monitored (e.g., temperature, location) keeps changing
- At most points of the time the database stores obsolete sensor values

Probabilistic Queries

3

Answering a Minimum Query with Database Readings Recorded Temperature Current Temperature $x_0 < y_0$: x is minimum $y_1 < x_1$: y is minimum Wrong query result Probabilistic Queries

Probabilistic Queries

- If the sensor value cannot change drastically over a short period of time, we can:
 - place lower and upper bounds on the possible values
 - 2. define probability distribution of values within the bound
- Evaluate probability for query answers, e.g.,
 - x: 70% chance for yielding the minimum value
 - y: 30% chance for yielding the minimum value
- Probabilistic queries give us a correct (possibly less precise) answer, instead of a potentially incorrect answer

Probabilistic Queries

7

Related Work

- Few research papers discuss the evaluation of a query answer in probabilistic form
- Wolfson et al. [WS99] discussed probabilistic range queries for moving objects
- Our previous work [CPK03] presented an algorithm for evaluating probabilistic nearest neighbor query for moving objects
- Both papers only address queries in a moving object database model
- Olston and Widom [OW02] discussed tradeoff between precision and performance of querying replicated data

Probabilistic Queries

Our Contributions

- A generic uncertainty model that is applicable to any database recording imprecise values
- Classification of probabilistic queries
- Evaluation and quality of probabilistic queries
- An experimental study of proposed methods

Probabilistic Queries

9

Database Model

	Meaning	
T	A set of database objects (e.g., sensors)	
a I	Dynamic attribute (e.g., temperature)	
T _i i	i th object of T	
	Value of a in T _i (e.g., temperature of a sensor) at time t	

Probabilistic Queries

Generic Uncertainty Model

- Example: moving object uncertainty [WS99]
- Can be extended to n dimensions

Probabilistic Queries

12

Classification of Probabilistic Queries

- Nature of answer
 - Value-based: returns a single value e.g., average query ([l,u], pdf)
 - Entity-based: returns a set of objects e.g., range query ({(T_i,p_i), p_i>0})
- 2. Aggregation
 - Non-aggregate: whether an object satisfies a query is independent of others e.g., range query
 - Aggregate: interplay between objects decides result e.g., nearest neighbor query

Probabilistic Queries

Classification of Probabilistic Queries

	Value-based answer	Entity-based answer
Non-	VSingleQ	ERQ
aggregate	What is the temperature of sensor x?	Which sensor has temperature between 10F and 30F?
Aggregate	VAvgQ, VSumQ, VMinQ, VMaxQ What is the average temperature of the sensors?	ENNQ, EMinQ, EMaxQ Which sensor gives the highest temperature?

 We develop query evaluation algorithms and quality metrics for each class.

Probabilistic Queries

14

EMinQ Step 1: Interval Elimination

- Returns a set of tuples (T_i,p_j), where p_i is the (non-zero) probability that T_i.a is the minimum value of a among all objects in T
- Eliminate objects that have zero probability of yielding the minimum value

Probabilistic Queries

- Cut off portions that are beyond the "upper limit"
- Sort intervals using lower bounds
- Rename objects as T_1, T_2, T_3, T_4 in ascending order of lower bounds

Probabilistic Queries

16

Evaluating probability of T₂

- IfT₂.a \in [/₂,/₃], T₂.a is the min with probability $\int_{l_2}^{l_3} f_2(x) \bullet (1-P_1(x)) dx$

$$p_2 \text{ is given by:}$$

$$\int_{l_2}^{l_3} f_2(x) \bullet (1 - P_1(x)) dx + \int_{l_3}^{l_4} f_2(x) \bullet \prod_{k=1,3} (1 - P_k(x)) dx + \int_{l_4}^{l_5} f_2(x) \bullet \prod_{k=1,3,4} (1 - P_k(x)) dx$$

Probabilistic Queries

Quality of Probabilistic Result

Notion of answer "quality"

"Which sensor, among 4, has the minimum reading?" (assuming only 1 answer exists, if values are known precisely)

Proposed metrics for different classes of queries

Probabilistic Queries

18

Answer Quality for Range Queries

"Is reading of sensor i in range [I,u]?"

- regular range query
 - "yes" or "no" with 100%
- probabilistic query ERQ
 - a) yes with $p_i = 95\%$: **OK**
 - b) yes with $p_i = 5\%$: **OK** (95% it is not in [I, u])
 - c) yes with $p_i = 50\%$: **not OK** (not certain)

$$Score = \frac{|p_i - 0.5|}{0.5}$$

Score_of_an_ERQ =
$$\frac{1}{|R|} \sum_{i \in R} \frac{|p_i - 0.5|}{0.5}$$

Probabilistic Queries

Quality for E- Aggr. Queries (1/2)

"Which sensor, among n, has the minimum reading?"

- Recall
 - Result set R = {(Ti, pi)}
 - e.g. {(T1, 30%), (T2, 40%), (T3, 30%)}
 - B is interval, bounding all possible values
 - e.g. minimum is somewhere in B = [10,20]
- Our metrics for aggr. queries Min, Max, NN
 - objects cannot be treated independently as in ERQ metric
 - uniform distribution (in result set) is the worst case
 - metrics are based on entropy

Probabilistic Queries

20

Quality for E- Aggr. Queries (2/2)

■ H(X) entropy of r.v. X (X₁,...,X_n with p(X₁),..., p(X_n))

$$H(X) = \sum_{i=1}^{n} p(X_i) \log_2 \frac{1}{p(X_i)}$$

- entropy is smallest (i.e., 0) iff $\exists i : p(X_i) = 1$
- entropy is largest (i.e., log₂(n)) iff all X_i's are equally likely
- Our metric:

$$Score_of_Entity_Aggr_Query = -H(R) \times |B|$$

- Score is good (high) if
 - entropy is low (small uncertainty)
 - the width of B is small

Probabilistic Queries

Scores for Value- Aggr. Queries

"What is the minimum value among n sensors?"

- Recall
 - result is: I, u, {p(x) : x ∈ [I,u]}
 - e.g. minimum is in [10,20], p(x) ~ U[10,20]
- Differential entropy

$$H(X) = -\int_{l}^{u} p(x)\log_{2} p(x)dx$$

Measures uncertainty associated with r.v. X with pdf p

Score
$$_of$$
 $_Value$ $_Aggr$ $_Query = -H(X)$

Probabilistic Queries

22

Improving Answer Quality

- Given uncertainty, the quality of the initial answer may be unsatisfactory
- To improve quality
 - server can request updates from specific sensors
- Due to limited resources
 - important to choose right sensors to update
 - use update policies

Probabilistic Queries

Update Policies

- Global choice (among all sensors)
 - Glb_RR pick random
- Local choice (among the relevant sensors)
 - Loc_RR pick random
 - MinMin pick such T_i that with min uncert. lower bound
 - MaxUnc pick T_i with max uncertainty

Probabilistic Queries

24

Experiments: Simulation

- Discrete event simulation
 - 1 server
 - 1000 sensors
 - limited network bandwidth
 - "Min" queries tested

Probabilistic Queries

Experiments: Uncertainty Model

- Uncertainty model
 - Sensor sends update at time t₀
 - time t₀
 - current value a₀
 - rate of uncertainty growth r₀
 - at time t, a is uniform in its uncertainty interval
- Queries
 - arrival ~ Poisson(λ)
 - each over a random subset of 100 sensors

Probabilistic Queries

Conclusions

We proposed:

- a) probabilistic queries for handling inherent uncertainty in sensor databases
- b) a flexible model of uncertainty defined
- c) a classification of probabilistic queries
- d) algorithms for computing typical queries in each class
- e) metrics for quantifying the quality of answers to probabilistic queries for each class
- f) various update heuristics to improve answer quality under resource constraints

Probabilistic Queries

Contact Information

Reynold Cheng

www.cs.purdue.edu/homes/ckcheng ckcheng@cs.purdue.edu

Dmitri V. Kalashnikov

www.ics.uci.edu/~dvk dvk@ics.uci.edu

Sunil Prabhakar

www.cs.purdue.edu/homes/sunil sunil@cs.purdue.edu

Probabilistic Queries

30

EMinQ Step 3: Evaluating p_i for T_i

- Let f₂(x) be the pdf of T₂.a
- If $T_2.a \in [x, x+dx]$, $T_2.a$ is the minimum iff $T_1.a > T_2.a$ with the probability $f_2(x) * (1-P_1(x)) dx$
- P_i(x) is the cumulative probability density function of T_i.a

Probabilistic Queries

References

- 1. **[WS99]** O. Wolfson and A. Sistla. Updating and Querying Databases that Track Mobile Units. In *Distributed and Parallel Databases*, 7(3), 1999.
- [CPK03] R. Cheng, S. Prabhakar and D. V. Kalashnikov. Querying imprecise data in moving object environments. In *Proc. of the 19th IEEE ICDE*, India, 2003.
- 3. **[OW03]** C. Olston and J. Widom. Best-effort cache synchronization with source cooperation. In *Proc. Of the ACM SIGMOD 2002.*

Probabilistic Queries

